

Short Communication

Differential expression of genes in resistant versus susceptible Gyr x Holstein cattle challenged with the tick Rhipicephalus (Boophilus) microplus

C.S. Nascimento¹, M.A. Machado², S.E.F. Guimarães¹, M.F.M. Guimarães², J.O. Peixoto¹, J. Furlong², M.C.A. Prata², R.S. Verneque², R.L. Teodoro² and P.S. Lopes¹

¹Departamento de Zootecnia, Universidade Federal de Viçosa, Campus Universitário, Viçosa, MG, Brasil ²Embrapa Gado de Leite, Juiz de Fora, MG, Brasil

Corresponding author: M.A. Machado E-mail: machado@cnpgl.embrapa.br

Genet. Mol. Res. 9 (4): 1974-1979 (2010) Received May 13, 2010 Accepted July 18, 2010 Published October 5, 2010 DOI 10.4238/vol9-4gmr905

ABSTRACT. The bovine tick *Rhipicephalus (Boophilus) microplus* causes major losses in cattle production systems in tropical regions. *Bos indicus* breeds are more resistant to ticks than *B. taurus* breeds. Resistance genes could be an alternative to control this parasite. We examined the pattern of gene expression of three calcium-binding-protein genes: translationally controlled tumor protein 1 (TPT1), allergen Bos d3 (S100A7), calcium channel protein transient receptor potential vanilloid 6 (TRPV6), and the cysteine proteinase inhibitor gene (CST6). These genes were selected from cDNA libraries prepared from skin biopsies taken from resistant and susceptible Gyr x Holstein F_2 animals. These biopsies were also used to study the expression level of these genes through real-time PCR analysis. The relative expression levels of the S100A7, TPT1, TRPV6, and CST6 genes were 2.01 \pm 0.6, 1.32

 \pm 0.9, 1.53 \pm 1.2, and 2.03 \pm 0.7 times higher in the susceptible group, respectively. Skin lesion tissue from the susceptible animals showed significantly more mRNA transcripts of these genes in comparison with the resistant animals (P = 0.001). However, this hypersensitivity does not seem to protect the susceptible animals against tick infestation.

Key words: qRT-PCR; Tick resistance; S100A7; TPT1; TRPV6; CST6