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ABSTRACT. We analyzed the publicly available ChromHMM BED 
files of the ENCODE project and tested the Markov properties of the 
different chromatin states in the human genome. Nucleotide frequency 
profiles of regional chromatin segmentations were analyzed, and 
Markov chains were built to detect Markov properties in the chromatin 
states of different ChromHMM regions. By estimating the transition 
probabilities of 200-base pair nucleotide sequences of the human 
genome, we constructed a nucleotide-sequence-based Markovian 
chromatin map called SeqChromMM.
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INTRODUCTION

Recently, Ernst et al. (2011) applied multivariate hidden Markov models to the 
biological assay dataset from the Broad Histone track of ENCODE, building annotation maps of 
15 chromatin states, known as ChromHMM (Ernst et al., 2011). The 9 browser extensible data 
(BED) files (with the human genome GRCh35/hg19) are published on the ENCODE Analysis 
Data Hub website for public download (http://genome.ucsc.edu/ENCODE/downloads.html) 
(ENCODE Project Consortium, 2012). Thus, recent advances in computational epigenetics 
such as ChromHMM provide new insights into n-gram probabilistic language models for 
parsing non-coding DNA regions (Smith et al., 1983; Borodovskii et al., 1986).

In our recent study (Lee and Park, 2015), we performed preliminary experiments to 
test whether each of the 15 chromatin states contained in the commonly annotated chromatin 
regions of the ENCODE Tier 1 cell types possessed Markov properties by applying third to 
sixth order Markov chains. We presented a pioneering study to provide the Markovian order 
statistics of nucleotide sequences of the whole human genome (Lee and Park, 2015).

In this study, a follow-up to our previous study, extended this analysis and continued 
our ongoing efforts to build a Markov property map of chromatin blocks of the human genome 
by publishing a sequence-based Markovian chromatin map, called SeqChromMM. In building 
the SeqChromMM, we modified our initial Markov models by dissecting the ChromHMM 
blocks into 200-base pair (bp) units, analyzing the blocks in relation to different cell lines, 
and iteratively rebuilding the Markov chains. Our map is an important resource for statistical 
models necessary to develop algorithms to predict chromatin states or genes in relation to the 
vast amount of biological assays of large-scale epigenetic projects.

MATERIAL AND METHODS

Building preliminary Markov chains based on a BED file single ChromHMM

In our recent study (Lee and Park, 2015), we used the BED files of ChromHMM 
(Ernst et al., 2011; Lee and Park, 2014) to analyze sequence-based profiles to identify 
nucleotide sequences in the 15 chromatin states with Markov properties. We downloaded 
the ChromHMM BED files of the Broad Histone track of the ENCODE consortium and 
parsed the BED files to build various transition tables based on nucleotide frequency profiles 
for each of the 15 different ChromHMM regions. The 15 chromatin states were Active, 
Repressed, and Poised Promoters (states 1, 2, 3), Strong and Weak Enhancers (states 4, 5, 
6, 7), Putative Insulators (state 8), transcribed regions (states 9, 10, 11), and large-scale 
repressed and inactive domains (states 12, 13, 14, 15).

Figure 1 displays 15 transition table Markov chains built from the commonly 
annotated ChromHMM regions of the erythrocytic leukemia (K562) and B-lymphoblastoid 
(GM12878) cell lines.

Figure 1A explains the detailed approach doe building Markov chains. Initially, 
the frequency counts were used to build 15 preliminary transition tables for the 5th order 
Markov models based on the common regions of the two ChromHMM BED files. These 
transition tables were used as the basis of a global Markov chain classifier for exploring 
and ranking sub-optimal predictions.

Figure 1B shows how a chromatin state was predicted based on the nucleotide 
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frequency profiles. Given a random sequence  in the state of a cell line, we calculated the 
sequence of chromatin states that maximized the following probability of the 15 Markov chain 
models, where   is a transition probability:

As these Markov chains can be used as a Naive Bayes classifier, we calculated the sequence 
of each ChromHMM block that maximized our Markov models.

Figure 1C shows an example prediction result from chr1:108,686,689 to chr1: 
108,809,715. For each ChromHMM block, the transition probabilities of the 15 Markov chain 
models were sorted in descending order according to their probability scores. Thus, the first 
column shows the assigned or predicted chromatin state that maximized P[x, p|M]. In this 
case, most ChromHMM blocks were predicted as the Active Promoter, or state 1.

Figure 1D shows the prediction result, a preliminary characterization of the Markov 
property of the 15 chromatin states, as the Markov property comes into the model as an 
assumption. Validity was typically verified empirically by statistical analysis. We measured the 
prediction accuracy for each chromatin state by adding the number of all correctly predicted 
blocks in the same chromatin broad group and dividing by the total number of testing blocks. 
The prediction accuracy of each state differed greatly, and the results clearly showed that some 
regions had a stronger Markov property than others. More detailed descriptions can be found 
in our previous study (Lee and Park, 2015).
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Figure 1. Initial Markov chains built from the 15 chromatin states of ChromHMM (heterochromatin and repetitive/
CNV regions were not population homogeneous, and later, excluded from the test set because they resulted in low 
entropy according to the Kullback-Leibler distance test (Kullback, 1987).
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Analyzing the prediction results by dissecting the ChromHMM blocks into 200-bp 
units

To extend our previous study (Lee and Park, 2015), we evaluated the ChromHMM 
blocks for cases in which our prediction result and ChromHMM annotation in the K562 or 
GM12878 BED file did not match. To evaluate these blocks, the ChromHMM blocks were 
uniformly dissected into 200 bp, and a chromatin state for each of the individual regions 
was analyzed and assigned a predicted chromatin state at a nucleosome resolution of 200 bp. 
Based on the prediction results, we created the initial version of a sequence-based Markovian 
chromatin map, called SeqChromMM, where the number of entries was 13,223,025.

Figure 2A and B explain the exemplary prediction results of the two ChromHMM 
blocks dissected into units of 200 base pairs. The original annotations of both blocks in the 
K562 and GM12878 BED files were chromatin state 1. However, Figure 2A and B are a 
correctly and incorrectly predicted example, respectively.

Figure 2. Two example predicted blocks (compared to the K562 cell line), dissected into 200-bp regions.

Figure 2A shows that the original block from chr1: 108,742,077 to chr1: 108,743,677 
(a block size of 1600 bp) was dissected into 8 units of 200 bp, where each 200-bp unit was re-
evaluated individually by our classifier. Most of the 8 200-bp units were constantly predicted 
as chromatin state 1, resulting in the correct prediction of the original block. However, as 
shown in Figure 2B, when the block from chr1: 108,814,677 to chr1: 108,819,877 (a block 
size of 5200 bp) was dissected into 26 units of 200 bp, most of the units were incorrectly 
predicted as chromatin state 11, resulting in the incorrect prediction of the original block. 
However, some parts of the 200-bp units (e.g., from chr1: 108,815,277 to chr1: 108,816,477) 
were correctly predicted as chromatin state 1.

Based on the observation that correctly predicted 200-bp units can be found even 
within an incorrectly predicted ChromHMM block (similar to the case shown in Figure 2B), 
we gathered more detailed distribution statistics of the percentage of the correctly predicted 
200-bp units within the incorrectly predicted ChromHMM Blocks, as shown in Figure 3. For 
example, among the ChromHMM blocks of state 1 (Active Promoter), 81.1% were correctly 
predicted, while 78.9% were incorrectly predicted. Among the incorrectly predicted blocks, 
16.7% contained at least one correctly predicted 200-bp unit.
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Figure 3. Distribution of percentage of the correctly predicted 200-bp units within the incorrectly predicted 
ChromHMM blocks of chromatin state 1 (excluding states 13, 14, and 15).

RESULTS

Publishing the SeqChromMM map

Finally, we iteratively excluded the incorrectly predicted 200-bp regions and rebuilt 
new Markov chains using the correctly predicted regions to produce 15 transition tables; 
we defined a correctly predicted block as one whose predicted result matches the majority 
annotation (more than 50%) of the 9 cell lines.

Figure 4 displays the distance matrix corresponding to newly built transition tables of the 
15 states of SeqChromMM. According to the Chi-square distance plot, state 3 (Poised Promoter) 
was quite distant from states 1 and 2 (Active Promoter, Weak Promoter), although states 1, 2, and 
3 all belonged to the same broad group of Promoters according to the ChromHMM document 
(Ernst et al., 2011). State 6 (Weak Enhancer) also showed different behavior compared to other 
enhancer states 4, 5, and 7. State 8 (Insulator) also showed a very different Markov property.

The results of the SeqChromMM map have been published on the GitHub repository 
(https://github.com/KyungEunLee/SeqChromMM.git). We also uploaded the SeqChromMM 
data for display in the UCSC browser (chr1:108,689,686-108,809,715). Figure 5 shows a 
snapshot, although our SeqChromMM custom annotation tracks are currently viewable only 
on the machine from which they were uploaded because of the publication policies of the 
UCSC genome browser (Rosenbloom et al., 2015).
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Figure 4. Distance matrix of the newly built transition tables of 15 Markov chains: the graph was drawn using 
Cytoscape (Shannon et al., 2003), an open source software platform for visualizing complex networks.

Figure 5. Snapshot of the SeqChromMM Track visualized in the UCSC browser. There are 10 tracks, where the 
first track indicates the predicted annotations of SeqChromMM and the other tracks represent the ChromHMM 
annotations for 9 different cell types. We followed the same color code of ChromHMM. For example, state 1 
segment is bright red (Active Promoter State), state 2 segment is light red (Weak Promoter State), state 3 segment is 
purple (Inactive/poised Promoter State), state 4 segment is orange (Strong enhancer State), and so on. The original 
15 states and their associated segment colors can be found on the Broad ChromHMM epigenome project page 
(http://moma.ki.au.dk/genome-mirror/cgi-bin/hgTrackUi?db=hg18&g=wgEncodeBroadHmm).

DISCUSSION

SeqChromMM is an important resource because it can construct probabilistic models 
necessary to develop computational epigenetic algorithms to predict chromatin states, in relation to 
the vast amount of biological assay information generated through large-scale epigenetic projects.

By dissecting the original ChromHMM blocks into 200-bp units and publishing 
SeqChromMM, we can study the characteristics of chromatin barriers by examining the 
200-bp units where the predicted states of the Markov chains change (Labrador and Corces, 
2002; Lunyak et al., 2007; Cuddapah et al., 2009; Wang et al., 2012). However, more 
detailed evaluation of the issues associated with the boundary elements of chromatin states is 
necessary, and the 200-bp units of SeqChromMM can serve as a resource for investigating the 
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characteristics of the chromatin boundaries in the whole human genome.
We can also investigate the overall variability in chromatin states in each 200-bp unit 

across the 9 cell lines in relation to the predicted states of SeqChromMM. We found that many 
positions of frequently variable chromatin states were the main sources of prediction errors. 
We also observed that our predicted states coincided with the annotations of other cell lines 
in most cases, although our initial Markov models were trained solely based on the BED files 
of the K562 or GM12878 cell lines. In general, Active Promoter and Transcribed chromatin 
states were highly constitutive. We also observed that Weak chromatin states were typically 
adjacent to Strong chromatin states.

Thus, sequence-based analysis dedicated to the prediction of epigenetic information is 
useful. Computational epigenomic predictions can substitute for experimental data to a certain 
degree. Prediction algorithms build computational models of epigenetic information from 
experimental data and can therefore act as a preliminary step toward statistical modeling of an 
epigenetic mechanism.

CONCLUSION

The field of epigenetics encompasses many diverse opinions, even regarding its definition. 
The proportion of genetically and epigenetically determined traits is also widely debated.

In this study, we extended our previous study of a conditional characterization of the 
Markov property of the publicly available 15 chromatin states of the ENCODE project and 
published the SeqChromMM map. The Markovian chromatin map has been made publicly 
available through GitHub and the UCSC Browser. We are collecting evidence not only 
from biological assays but also from DNA sequences, which can play an important role in 
determining the chromatin states of the human genome.

However, it was not possible to evaluate combinations of different chromatin states 
in cell lines within these Markov chain models in this study. Thus, SeqChromMM will be 
continuously improved by further investigating these issues.
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