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ABSTRACT. Here, we applied a two-stage clonal expansion model of 
morphological (cell-size) evolution to a long-term evolution experiment 
with Escherichia coli. Using this model, we derived the incidence 
function of the appearance of cell-size stability, the waiting time until 
this morphological stability, and the conditional and unconditional 
probabilities of morphological stability. After assessing the parameter 
values, we verified that the calculated waiting time was consistent with 
the experimental results, demonstrating the effectiveness of the two-
stage model. According to the relative contributions of parameters 
to the incidence function and the waiting time, cell-size evolution is 
largely determined by the promotion rate, i.e., the clonal expansion rate 
of selectively advantageous organisms. This rate plays a prominent role 
in the evolution of cell size in experimental populations, whereas all 
other evolutionary forces were found to be less influential.
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INTRODUCTION

A central aim of evolutionary biology is a deeper understanding of the mechanisms 
of morphological evolution. Despite considerable progress towards this end, much research is 
still devoted to the study of morphological evolution. For these investigations, evolutionary 
biologists resort to fossils and examination of natural populations (Jablonski, 2000; Huey et 
al., 2000; Thomas et al., 2001; Márquez-García et al., 2009; Futuyma, 2010; Mahler et al., 
2010; Matamorovidal et al., 2012). However, a more explicit and complete understanding 
remains elusive due to difficulties in the application of the fossil data to the natural population. 
Therefore, some biologists have started to conduct evolution experiments on various organisms 
in order to explore issues pertaining to morphological evolution. In 1988, Lenski et al. used 
Escherichia coli to perform a long-term laboratory evolution experiment. E. coli exhibits 
many features that are advantageous for evolution experiments. For instance, it has a short 
generation time and large population size, and it can be kept in suspended animation and later 
resuscitated, allowing for direct comparison of evolutionary change in ancestral and evolved 
types. Because many variables can be controlled, this laboratory evolution experiment provides 
the opportunity to rigorously explore questions pertaining to morphological evolution. The 
materials and methods that involve the ancestral strain, culture conditions, means for checking 
contamination, measurement of average cell volume, etc. are demonstrated in the literature 
(Lenski et al., 1991; Elena and Lenski, 2003; Lenski, 2004). This type of evolution experiment 
has illustrated more extensive and complicated evolution kinetics than theoretical studies on 
single populations or alleles. In this long-term experiment, we detected that morphology (cell 
size) increased quickly in all 12 of the experimental populations for the first 2000 generations 
in the unchanged experimental condition. However, cell size was ultimately nearly static, 
which is morphological stasis (or near stasis) (Lenski and Travisano, 1994).

In that evolution experiment, mutations in the pbpA operon were shown to be responsible 
for cell-size evolution in two populations (Philippe et al., 2009). There are also mutations in the 
pbpA operon in four other populations, which likely affect the changes in cell volume (Woods 
et al., 2006). Additionally, only one of the 12 populations has a mutation that is upstream of 
the glmUS operon, which contributes to adaptation, involving the evolution in cell size (Stanek 
et al., 2009). However, due to the increment in the average cell size in all 12 populations, and 
the limited influence of the above mutations on the increase in cell volume, it is possible that 
other mutations could have an effect on evolved changes in cell size. Moreover, the selective 
advantage or other evolutionary reasons for changes in cell volume remain unintelligible.

In an effort to fully understand cell-size evolution, we resort to the application of 
mathematical models. Armitage and Doll (1954) and Knudson (1971) used mathematical 
models to describe the evolutionary process and investigate the anticipated time to achieve a 
certain number of mutations. Iwasa et al. (2004) analyzed a two-stage model for depicting a 
cell population evolving in terms of the Moran model. Beerenwinkel et al. (2007) examined the 
waiting time until the occurrence of several mutations according to the Wright-Fisher model 
when the population size is large. Schweinsberg (2008) and Durrett et al. (2009) developed 
asymptotic distributions for the anticipated time to a number of mutations. Gerstung and 
Beerenwinkel (2010) described the accumulation of mutations using conjunctive Bayesian 
networks. Moreover, there is a mathematical model that connects cell physiology with 
population genetics to replicate parallel increases in cell size and fitness observed in the 
evolution experiment with E. coli (Graña and Acerenza, 2001). In this study, we developed 
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a two-stage clonal expansion model (Moolgavkar, 1978; Moolgavkar and Venzon, 1979; 
Moolgavkar and Knudson, 1981) to describe morphological evolution in an E. coli evolution 
experiment in a constant environment. We derived the incidence function of emergence of 
cell-size stability, calculated the waiting time until this morphological stability, and expressed 
the conditional and unconditional probabilities. Furthermore, with the aim of analyzing and 
interpreting this morphological (cell-size) evolution under various evolutionary forces, we 
determined how the various parameters affect the incidence, function, and waiting time. 
Finally, we compared the dynamics of cell-size evolution obtained by the two-stage clonal 
expansion model and the Wright-Fisher model.

MATERIAL AND METHODS

We assume that two rate-limiting events are required to reach morphological (cell-
size) stability after the introduction of E. coli into the constant experimental environment. 
In other words, the genetic progress of cell size evolves on the basis of a two-stage clonal 
expansion model. In the long-term experiment, there are 12 replicate E. coli populations 
(Lenski et al., 1991). They have the same ancestor, and have been procreated in an identical 
environment since 1988. Therefore, each population has no initial genetic variance, and 
completely depends on new mutations in the following evolution. We consider each 
population of E. coli to be wild type at time (generation) t = 0, with a constant population 
size N. These wild-type organisms (W-organisms) mutate to organisms of an intermediate 
shape (I-organisms) with a stochastic event rate of µ1(t). These I-organisms can split 
into two groups of I-organisms at a stochastic rate α(t) and can die or differentiate at 
rate β(t). Additionally, I-organisms can split into an I-organism and a morphologically 
stable organism (S-organism) at a second stochastic event rate of µ2(t) (Figure 1). In the 
experimental population of E. coli, the cell volume eventually becomes static (or near 
static), demonstrating that the organisms have run out of ways to increase their cell size and 
continue to adapt to the unaltered environment. Within this two-stage model, the formation 
of a single S-organism is presumed to result in the eventual stasis of cell size in the long-
term experiment. The lag time that occurs between the generation of a single S-organism 
and the generation of a morphologically stable population can be neglected.

Figure 1. Schematic representation of the two-stage clonal expansion model. W, wild-type organisms (W-organisms); 
I, intermediate organisms (I-organisms); S, morphologically stable organisms (S-organisms).
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Incidence function

In the two-stage model of clonal growth, the most essential quantity is the incidence 
function at time (generation) t, denoted by h(t), which is the instantaneous rate of emergence 
of the first S-organism in a population. With time, the incidence function h(t) increases first 
linearly and then exponentially to reach a constant asymptotic value. This is also observed at 
t = 0 and h(0) = 0. However, we can only observe the linear growth of the incidence function 
with numerous data sets. Therefore, it is sufficient to use a simplified form of the two-stage 
model in this case (Chen, 1993; Heidenreich, 1996).

Initially, at time t = 0, all members of the population of N individuals of E. coli are 
W-organisms. The expected number of I-organisms, y(t), is given by the ordinary differential 
equation (ODE)

The rate of appearance of the first S-organism in the population can be written as:

In the long-term evolution experiment, there are no mechanisms for genetic exchange and no 
artificial special traits of organisms after the E. coli is introduced into the constant environment. 
Therefore, the parameters µ1, α, β, and µ2 should be constant. Therefore, we can obtain the 
solution of Equation 1 as follows:

Accordingly, the incidence function is of the form:

Waiting time to morphological stability

The survival function for this simplified two-stage model is defined as

where H(t) is the integrated incidence
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Within this model, the waiting time to cell-size stability in the evolution experiment can be 
estimated as the median waiting time T to the first S-organism, which satisfies the equation 
S(T) = ½, i.e. H(T) = ln 2. The solution of this equation is

where 
2

1 2

( ) ln 2 1A
N

α β
µ µ

−
= + , and W-1 is the branch of the Lambert W function that is indexed by -1. The 

Lambert W function is the inverse function of f(x) = xex (Corless et al., 1996). Moreover, W-1 
can be expanded into series as follows (Schöllnberger et al., 2010):

Consequently, the median waiting time until the first S-organism appears can be approximated 
as:

Probability of morphological stability

According to the two-stage clonal growth model, the probability-generating function 
Y for the generation of I-organisms and S-organisms out of N W-organisms can be deduced 
and is dependent on the probability-generating function F for the generation of I-organisms 
out of initially one I-organism and zero S-organisms (Hoogenveen et al., 1999). When the 
number of I-organisms, y, and the number of S-organisms, z, are time-constant parameters, the 
probability-generating function F can be solved:

Here, 0 < B(z) < 1 and C(z) ≥ 1, indicate the two roots of the characteristic equation:

Then, the probability generating function Y is given by:

The conditional probability that there are zero S-organisms at t starting from one I-organism, 
P(S(t) = 0 | I(0) = 1), can be defined by F(1,0;t). Then, substituting z = 0 in Equation (11), we 
obtain the two roots, which can be approximated as B ≈ β/α and C ≈ 1 + µ2/α. Therefore, the 
conditional probability is:
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In addition, the unconditional probability of zero S-organisms at t in the experimental 
population is:

Furthermore, the conditional probability of one S-organism at t in one experimental population, 
given that there is initially one I-organism, can be written as:

The unconditional probability that there is one S-organism at t is given by:

RESULTS

We used a two-stage growth model to investigate cell-size dynamics in evolving 
populations of E. coli. Using this model, we expressed the incidence function of emergence of 
cell-size stability in a long-term experiment and computed the waiting time to morphological 
stability, which is an analytical approximation from the median waiting time T to the emergence 
of the first S-organism. Moreover, we also provide the conditional and unconditional probabilities 
for the generation of S-organisms. We used the following parameter values in this two-stage 
model: the first event rate µ1 = 1 x 10-10 per generation, the promotion rate (the growth rate of 
I-organisms) α - β = 0.005 per generation, the second event rate µ2 = 1 x 10-8 per generation, and 
the population size N = 5 x 108 (Lenski and Travisano, 1994; Barrick et al., 2009).

As shown in Figure 2, the incidence function is powerfully affected by the promotion 
rate α - β, whereas the first event rate µ1 has less influence. Similar to µ1, the second event 
rate µ2 and the population size N enter linearly into the incidence function, and thus also exert 
a weaker effect. Accordingly, the promotion rate is the dominant force in the evolutionary 
dynamics of cell size in experimental populations in a constant environment.

Using these parameter values, we evaluated the median waiting time T, which 
correlates with the results of the long-term evolution experiment (Figure 3). Therefore, this 
two-step model is a good fit for the genetic progress of cell size. To explore the dependence 
of the median waiting time T on the parameters µ1, α - β, µ2, and N, we plotted T against 
varying parameter values of the first event rate µ1 ranging from 1 x 10-11 to 1 x 10-8, values of 
the promotion rate α - β ranging from 5 x 10-4 to 5 x 10-1, values of the second event rate µ2 
ranging from 1 x 10-9 to 1 x 10-6, and values of the population size N ranging from 5 x 106 to 5 
x 109 (Figure 3). When time T is plotted against one parameter, the other parameter values are 
set as given above. As a result, Figure 3 shows that the median waiting time T decreases with 
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increasing µ1, α - β, µ2, and N. Therefore, T exhibits the strongest dependency on the growth 
rate α - β, confirming a major role of the promotion rate in the process of cell-size evolution 
in the long-term experiment. Because of the difficulty in obtaining parameter values for α and 
β, we only derived analytic expressions for conditional and unconditional probabilities for the 
generation of S-organisms in the two-stage growth model of cell-size evolution.

Figure 2. The incidence function h(t) is plotted versus the time t for three different first event rates (above) and 
three different promotion rates (below). Parameter values include µ2 = 1 x 10-8 per generation for the second event 
rate and N = 5 x 108 for the population size.

Figure 3. The median waiting time T to the first S-organism as a function of the first event rate µ1, the promotion 
rate α - β (the growth rate of I-organisms), the second event rate µ2, and the population size N. Triangles represent 
experimental data from the long-term E. coli evolution experiment.
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DISCUSSION

In addition to the above model, we employed a population genetic model, the 
Wright-Fisher model, to investigate the genetic progress of cell size in the evolution 
experiment (Cui and Yuan, 2012; Cui and Yuan, 2015). In the Wright-Fisher model, cell-
size evolution is described as an accumulation of mutations with selective advantage in 
susceptible genes involved in cell size. In contrast, the two-stage clonal expansion model 
regards this evolutionary process as the end result of two crucial, specific, irreversible, 
rate-restrictive, and hereditary genomic events. The two-event rates, µ1 and µ2, do not 
represent genomic mutation rates, but rather conversion rates between the stages of 
morphological evolution. For calculation of the waiting time to final stasis (near stasis) 
in cell size in the Wright-Fisher model, we compute this waiting time as the time until 
the emergence of an organism with m mutations in the evolving population of E. coli. By 
comparison, in the two-step model, this waiting time is estimated by the median time to 
the occurrence of the first S-organism.

The two different models have conceptual affinities, as both interpret cell-size 
stability as occurring via cumulative mutations with selective advantage and clonal 
expansion of selectively favorable organisms. Moreover, the growth rate, α - β, of 
I-organisms in the two-stage model plays an analogous role to the average selective 
advantage, s, in the Wright-Fisher model. Therefore, the two parameters s and α - β can 
be regarded as the clonal growth rate of selectively advantageous organisms and thus 
represent selection parameters.

In the Wright-Fisher model of cell-size evolution, we calculated the expected waiting 
time to reach cell-size stability as:

(see equation (19) in Cui and Yuan, 2015). By comparing this calculation with the equation 
for waiting time to cell-size stability in the two-stage clonal expansion model (see Equation 
(9)), we find that the two equations are obviously similar. In both expressions, the selection 
parameters s and α - β appear in the denominator, whereas all other parameters appear only 
in the logarithm. Accordingly, the two models give the same conclusion - namely, that the 
selection parameter has the most powerful effect on waiting time, implying that cell-size 
evolution is mainly driven by the selection parameter. Moreover, based on parameter values, 
these two calculations of the waiting time to reach cell-size stability are both in line with the 
results of the long-term experiment.

In summary, it can be said that the analytical and numerical analysis of the waiting 
times derived from two different mathematic models of cell-size evolution in experimental E. 
coli populations strengthen the claim that the clonal expansion rate of selectively advantageous 
organisms are the largest driving force.
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