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ABSTRACT. Identifying biomarker genes and characterizing 
interaction pathways with high-dimensional and low-sample size 
microarray data is a major challenge in computational biology. In this 
field, the construction of protein-protein interaction (PPI) networks 
using disease-related selected genes has garnered much attention. 
Support vector machines (SVMs) are commonly used to classify 
patients, and a number of useful tools such as lasso, elastic net, SCAD, 
or other regularization methods can be combined with SVM models to 
select genes that are related to a disease. In the current study, we propose 
a new Net-SVM model that is different from other SVM models as it is 
combined with L1/2-norm regularization, which has good performance 
with high-dimensional and low-sample size microarray data for cancer 
classification, gene selection, and PPI network construction. Both 
simulation studies and real data experiments demonstrated that our 
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proposed method outperformed other regularization methods such 
as lasso, SCAD, and elastic net. In conclusion, our model may help 
to select fewer but more relevant genes, and can be used to construct 
simple and informative PPI networks that are highly relevant to cancer.

Key words: SVM model; L1/2 regularization; Gene selection; 
Protein-protein interaction networks; Machine learning

INTRODUCTION

Classifying cancer patients and identifying cancer-related genes using high-
dimensional, low-sample size microarray data is an important problem in cancer treatment 
and drug design. To date, many methods have been used to try to solve this problem including 
logistic regression, Cox models, and gene-pair methods (Hosmer and Lemeshow, 2004; 
Ma et al., 2004; Li et al., 2008; Goeman, 2010). The support vector machine (SVM) model 
(Suykens and Vandewalle, 1999) with different regularization methods is one of the most 
widely used supervised learning methods, and can be applied for disease classification and 
feature selection. Owing to the high dimensionality and low sample size of microarray gene 
data, the SVM model is usually regularized with penalties such as those of L1-norm (lasso) 
or L2-norm (ridge) regularization (Hoerl and Kennard, 1970; Zhu et al., 2004). The goals of 
the regularization methods are to minimize regression errors and to select relevant variables 
simultaneously through generation of sparse solutions. The SVM model has shown great 
success in outcome prediction for different kinds of cancers. However, the weakness of the 
SVM model is that its results are based purely on computational or algorithmic points, which 
may not be biologically meaningful in cancer treatment (Bair and Tibshirani, 2004). In order to 
overcome this shortcoming, Li and Li (2008) proposed a simple and fast network-constrained 
regularization procedure, which could identify related genes and build networks that were 
relevant to the disease or disease outcome. Recently, many similar methods have been proposed 
using gene expression data to construct protein-protein interaction (PPI) networks based 
on other supervised learning methods such as logistic regression or Cox models combined 
with different regularization methods (Chuang et al., 2007; Brouard et al., 2010; Zhang et 
al., 2013a,b). Generally, the widely used L1-norm and L2-norm regularization methods may 
identify a large number of irrelevant disease genes, which greatly increases research costs 
and makes the constructed networks more complex. Xu et al. (2012) proposed that the L1/2 
regularization method could find more sparse solutions. Moreover, L1/2 regularization has 
some good statistical properties such as sparsity, unbiasedness, and oracle properties, and 
has already been successfully applied to real data analyses (Liang et al., 2013; Liu et al., 
2014; Chai et al., 2015). However, according to the literature, L1/2 regularization has only 
been used for gene identification and has not been combined with the SVM model (Bair 
and Tibshirani, 2004), and the results of L1/2 regularization are only based on algorithms. In 
order to obtain more simple, accurate, and biologically meaningful results, we combined a 
network-constrained procedure and L1/2 regularization in a newly proposed Net-SVM model. 
Our method can be used for disease classification, disease-related gene identification, and 
can also be used to construct relevant PPI networks. The genes identified by our method can 
provide molecular interaction information about disease-related biological processes, which 
can be combined with protein network information collected from biological databases such 
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as BioGRID that contains biological interaction data from more than 43,000 publications 
(Stark et al., 2006). The constructed networks, which combine this protein network data with 
molecular interaction information extracted from gene expression and biological process 
analyses, have been demonstrated to be biologically meaningful and can effectively remove 
background noise (Li and Li, 2008; Zhang et al., 2013a). In the current study, a new version 
of the Net-SVM model with L1/2 regularization is introduced; a coordinate descent algorithm 
is presented that completes the Net-SVM model with L1/2 regularization; the performances of 
different methods on simulated and real datasets are demonstrated; we provide a biological 
analysis of the selected genes and constructed PPI networks in real cancer datasets; and 
conclusions about our proposed method are given.

MATERIAL AND METHODS

The L1/2 penalized Net-SVM model

In this study, we defined a network G = (V, E, W), where V is the set of genes in the dataset 
and e = (u~v) represents the set of edges that gene u and v are linked in the PPI network. W is the 
weight of the edges where w(u, v) indicates the weight of the edge e = (u~v). We set dv as the de-
gree of gene v, such that it is the number of edges that are linked with gene u. The normalized La-
placian matrix L for W with u~v can be defined as previously described as follows (Chung, 1997):
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This matrix L is always a non-negative definite matrix, and we can obtain many useful 
properties from the graph of the corresponding set of eigenvalues or spectrum.

Consider that the dataset contains n samples and p genes, with 1 2( , ,... )T
ny y y y=  
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where {h1 (x1)… hp (xp)} are the dictionary of basic functions.
Add the regularization part to the SVM model, it can be written as
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where the l is the tuning parameter.
Following previous study (Suykens and Vandewalle, 1999), our proposed Net-SVM 

model with network constraints can be defined as:
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where l1 and l2 are the tuning parameters. The first term is the log-likelihood function of the 
SVM model and the regularization part is used to induce a sparse solution. The second part 
is a network constraint based on the Laplacian matrix, which can be used to induce a smooth 
solution of the network.

According to previous methods (Zou and Hastie, 2005), we produced a new set of 
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Equation 6 allows us to solve the Net-SVM as an equivalent optimization problem 
with regularization. The L1-type problem can be written as:

1
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In general, the L1-type regularization method can efficiently solve the optimization 
problem. However, due to the high-dimensionality and low-sample size of microarray data 
from biological samples, the L1-type regularization may produce many inconsistent gene 
selections and some results are subject to extra bias. In order to solve this problem, Xu et al. 
(2010) proposed the L1/2 regularization method to obtain a more sparse solution. The sparsity, 
unbiasedness, and oracle properties of the L1/2 regularization led us to predict that it would be 
more suitable for biological datasets. The Net-SVM model with the L1/2 regularization can be 
written as:
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* * * * * * *2 2

0 1 1
1

( , ) min 1 ( ) ( ) ( )
n p p

p pT
i j j i j jj j

i j i
f y h x Y X Y Xγ b b b γ b b b b

+
∗ ∗ ∗ ∗ ∗ ∗

= =
= =

  
= - + + = - - +  

   
∑ ∑ ∑ ∑ (Equation 8)



5L1/2-penalized Net-SVM model

Genetics and Molecular Research 15 (3): gmr.15038794

A coordinate descent algorithm for the L1/2-penalized Net-SVM model

Next, a coordinate descent algorithm was designed to implement the L1/2-penalized 
Net-SVM model. The main idea of the coordinate descent algorithm for the L1/2-penalized 
Net-SVM model is very simple and efficient. The target function Equation 8 is optimized with 
respect to the value of the coefficient bj, and the coordinated descent algorithm is repeated for 
many cycles from j = 1 to p iteratively until all coefficients converge. The coordinate descent 
algorithm applied for L1-type regularization by the soft thresholding operator was defined as 
follows:

if 
( ) ( , )     if 

0 if 

j j

j j j

j
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Following methods described by Xu et al. (2012), the following new half threshold 
function was used instead of Equation 9:
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Based on this new half threshold function, the coordinate descent algorithm was 
designed with the Newton-Raphson iterative method for the L1/-penalized Net-SVM model, 
and proceeds as follows:

Coordinate descent algorithm for the L1/2 penalized Net-SVM model
Step 1: Initial all b = 0 (j=1,2…p) and l; set m = 0; Step 2: Construct the Laplacian matrix 

L, the X* and Y*; Step 3: Solve 
1

* * * * * * * 2
1

( ) ( ) pT
jj

Y X Y Xb b b
=

- - +∑ , subject to the constraints 
of the Net-SVM model with penalties; Step 4: Make m = m + 1, update ( , )jHalfb ω l= ; Step 
5: Repeat Steps 3, 4 until all b(m) are converged.

RESULTS

Simulation experiments

To test the performance of our proposed L1/2-penalized Net-SVM model, we compared 
the results of Net-SVM models with the following four regularization approaches: elastic net, 
lasso, SCAD, and L1/2. We generated the test network datasets according to the following 
algorithm (Li and Li, 2008):

Step 1: Suppose that there are 200 independent transcription factors xn which each 
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transcription factor regulates 10 different genes xm, so that the constructed network contain 
about (200*10+200 = 2200) variables, set N = 100. That means the dimension p = 2200, and 
the size of the dataset N = 100. The transcription factors xn, xm are generated by the normal 
distribution N(0,1).

Step 2: Consider the correlation between the transcription factors and their respective 
regulated genes, set the correlation coefficient r=0.75, the regulated genes xm will be rewritten 
as: xm= (1 - 0.75) *xm+ 0.75*xn. Combine the xm and xn, we get the total variables Xi.

Step 3: Generate 

10 10 10 10
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In the current study, a 10-fold cross validation approach was used to tune the 
regularization parameters for the different penalized Net-SVM models. In order to obtain 
more accurate results, all tuned methods were applied to the different datasets 100 times.

Three parameters were used to evaluate the accuracy of the different methods in the 
test experiments, including the percent correct, sensitivity, and specificity. We defined the true 
positive (TP) as the number of correctly selected genes, false positive (FP) as the number of 
irrelevant selected genes, false negative (FN) as the number of genes related to the disease that 
were not selected, and true negative (TN) as the number of the irrelevant genes that were not 
selected by different methods.

selected correct genespercent correct
total selected genes

=

,TP TNSensitivity Specificity
TP FN TN FP

= =
+ +

Table 1 shows the performances of the Net-SVM models with different regularizations. 
We found that when comparing the numbers of correctly selected genes, the Net-SVM with 
elastic net regularization selected the most correct genes (43.82), whereas the Net-SVM 
with L1/2 regularization selected the least (42.65); nevertheless, the differences of the results 
obtained by the different methods were very small. For the number of total selected genes, 
the Net-SVM with lasso or elastic net regularizations selected the largest numbers of genes. 
On the contrary, the Net-SVM model with L1/2 regularization only selected approximately 
56.43 genes. Thus, the accuracy of gene selection with the L1/2 regularization was higher 
(75.58%) than those obtained with SCAD (61.15%), lasso (13.23%) and elastic net (9.83%) 
regularizations.

When comparing the sensitivities, we found that the values obtained by the different 
methods were very close. In regards to specificity, the performance of Net-SVM with L1/2 
regularization was the best. This indicates that too many irrelevant genes were selected by 
the other three methods. The misclassification errors are shown in the last column of Table 1. 
The Net-SVM model with elastic net regularization resulted in the largest misclassification 
error value (8.12), while the Net-SVM with L1/2 regularization achieved the lowest value 
(4.59). As mentioned above, the Net-SVM model with L1/2 regularization selected the lowest 
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number of genes in the datasets, and thus obtained the highest accuracy in gene selection. 
Furthermore, this method exhibited the best performance in the classification compared to 
the other methods. Therefore, we concluded that the Net-SVM model with L1/2 regularization 
may be an accurate and efficient method for high-dimensional and low-sample size biological 
datasets in cancer research.

Table 1. Gene selection performance of different Net-SVM models with different regularization methods.

Methods Selected correct genes Total selected genes Percent correct Sensitivity Specificity Misclassification error 
Net-SVM+L1/2 42.65 56.43 75.58% 96.93% 99.36% 4.59 
Net-SVM+SCAD 42.83 70.04 61.15% 97.34% 98.74% 5.03 
Net-SVM+Lasso 43.31 327.28 13.23% 98.43% 86.83% 7.74 
Net-SVM+Elastic net 43.82 445.53 9.83% 99.59% 81.37% 8.12 

 

Figures 1-4 show the coefficient paths and misclassification errors obtained by the 
different methods for one run in the simulation experiments. The vertical dotted lines indicate 
the optimal solutions as determined by the minimal misclassification values computed in the 
10-fold cross validation. We found that the solution path obtained by the Net-SVM model with 
L1/2 regularization was sparser than those obtained by the other three methods.

Figure 1. Performance obtained by the Net-SVM model with L1/2 regularization.

Figure 2. Performance obtained by the Net-SVM model with SCAD regularization.
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Real biological data experiments

In order to further evaluate the performances of the four Net-SVM models with 
different regularizations, two real datasets were used.

Prostate cancer dataset

The prostate cancer dataset was produced by Dinesh et al. (Singh et al., 2002), and 
contains information on approximately 12,600 genes from 102 total samples, including 
those from 52 prostate cancer patients and 50 healthy controls. We evaluated the prediction 
performance of the four different Net-SVM models using the following random partition: 3/4 
of the samples (N = 77) were used as the training set, and the other 25 samples were used for 
testing prediction capability.

Figure 3. Performance obtained by the Net-SVM model with Lasso regularization.

Figure 4. Performance obtained by the Net-SVM model with elastic net regularization.
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Lung cancer dataset

The lung cancer dataset GDS3527 (Landi et al., 2008) was downloaded from the 
NCBI GEO Database (http://www.ncbi.nlm.nih.gov/sites/GDSbrowser). This lung cancer 
gene expression dataset contains information on 22284 genes from 58 lung cancer patients 
and 49 healthy controls. A total of 80 samples were used for the training, and the other 27 
samples were used for testing.

Tables 2 and 3 show the average results of the Net-SVM models with different 
regularizations applied to the two real datasets for 100 runs. Our results revealed that the 
L1/2-penalized Net-SVM model selected the lowest number of genes, whereas the elastic net 
regularization selected the most genes. The numbers of wrongly classified patients by the four 
methods were very similar, and the performance of the L1/2-penalized Net-SVM model was the 
best. Performance is a very important factor in clinical research, where the goal is to obtain an 
accurate result using the lowest number of genes to reduce research costs.

Table 2. The results of the four Net-SVM models with different regularization methods in prostate tumor dataset.

 Selected genes Connected genes Connected edges Cross validation error Test error 
Net-SVM+L1/2 68.74 54.96  4.01/77 2.95/25 
Net-SVM+SCAD 76.93 61.48  4.07/77 2.97/25 
Net-SVM+Lasso 120.52 93.41  4.15/77 3.06/25 
Net-SVM+Elastic net 215.17 182.62  4.21/77 3.07/25 

 

Table 3. The results of the four Net-SVM models with different regularization methods in lung cancer dataset.

 Selected genes Connected genes Connected edges Cross validation error Test error 
Net-SVM+L1/2 180.32 76.57 80.15 6.56/80 3.88/27 
Net-SVM+SCAD 214.56 102.11 111.48 6.76/80 3.92/27 
Net-SVM+Lasso 306.19 178.26 239.34 7.02/80 4.16/27 
Net-SVM+Elastic net 421.73 243.44 333.06 6.95/80 4.09/27 

 

Biological analysis of the selected genes and constructed PPI networks in lung cancer

Here, we provide a brief biological analysis of the results for the lung cancer dataset 
GDS3527. In Figures 5-8, the PPI networks related to lung cancer obtained by the four Net-
SVM models with different regularizations are presented. The results clearly demonstrate that 
the PPI network obtained by the L1/2-penalized Net-SVM model is more concise than the 
other three networks. At the same time, the classification errors obtained by the L1/2-penalized 
Net-SVM model were the lowest compared to those obtained by the other methods (Table 3). 
Hence, we expect that our proposed method may help researchers construct disease-related 
PPI networks quickly and accurately.

In evaluating the four PPI networks constructed by the different methods, we found that 
some important genes were present in all four networks, including RPA3, TAL1, MIF, SPP1, 
NME1, TTN, HSPB2, CRYAB, CAV1, and ENO1, which were mostly found at center nodes 
in the PPI networks and had many network branches. Interestingly, we found that although 
these genes were at important nodes in the constructed the PPI networks, they may not be the 
decisive nodes that determine whether the person has the disease. Table 4 lists the 15 top-
ranked disease-related genes that were selected by the four different regularization methods. 
The genes in bold are the genes that were selected by all four methods. As seen in Table 4, 
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Figure 5. PPI network for lung cancer obtained by L1/2 penalized Net-SVM.

Figure 6. PPI network for lung cancer obtained by SCAD penalized Net-SVM.

we found that only three center nodes were present in the 15 top-ranked informative genes, 
including SPP1, TAL1, and CAV1. Moreover, these three genes have all been implicated in 
cancer. Specifically, SPP1, the protein encoded by the SPP1 gene, is involved in the attachment 
of osteoclasts and has been previously implicated in cancer (Wu et al., 2014; Lin et al., 2015). 
Additionally, TAL1 and CAV1 have both been suggested to play a role in cancer (Patel et al., 
2014; Loosveld et al., 2014; Sayhan et al., 2015; Zhao et al., 2015).
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Figure 7. PPI network for lung cancer obtained by Lasso penalized Net-SVM.

Figure 8. PPI network for lung cancer obtained by elastic net penalized Net-SVM.
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In addition to these genes, three other genes were selected by all four models, 
including SASH1, AGTR1, and CAT. SASH1 has been shown to play an important role in 
tumor formation (Martini et al., 2011). AGTR1 has been shown to be important in controlling 
blood pressure and volume in the cardiovascular system, and can be found in a KEGG 
cancer pathway. CAT encodes for a catalase that is an important antioxidant enzyme in the 
human body to defend against oxidative stress. Oxidative stress plays an important role in 
the development of many chronic or late-onset diseases such as cancer, asthma, and diabetes. 
Thus, this gene is also associated with cancer (Shen et al., 2015). There were some other 
genes that were selected by the Net-SVM model with L1/2 regularization that were not selected 
by the other models, which were also related to cancer. For example, previous studies have 
demonstrated that high expression of CRYAB was correlated with poor survival in non-small 
cell lung cancer patients (Qin et al., 2014). Another gene, NME1, has been shown to have a 
great effect on cancer inhibition, and thus is very important in cancer treatment (Banerjee et 
al., 2015; Niitsu, 2014). Therefore, the genes only selected by the L1/2-penalized Net-SVM 
model were all related to the cancer. Above all, we believe that our Net-SVM model with L1/2 
regularization can identify cancer-related genes accurately and efficiently.

DISCUSSION

In the current study, we proposed a new Net-SVM model with L1/2 regularization, which 
can be used to identify highly relevant biomarkers in high-dimensional and low-sample size 
biological datasets. The method can also be used to construct corresponding PPI disease networks. 
This model was completed by a coordinate descent algorithm with the Newton-Raphson iterative 
method. Our method was shown to select fewer genes, but this did not reduce the accuracy of 
its predictions. The results of the simulation and real data experiments both showed that the 
performance of the Net-SVM model with L1/2 regularization was better than those of the other 
methods in regards to gene selection and classification. Our method can also be used to construct 
simple and accurate PPI networks for cancer diagnosis, and hence, the Net-SVM model with L1/2 
regularization may be a competitive method for gene selection and PPI network construction.
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Table 4. The 15 top-ranked informative genes selected by Net-SVM models with different regularization methods.

Rank L1/2 SCAD Lasso Elastic net 
1 SPP1 SPP1 SPP1 SPP1 
2 TEK TAL1 AGTR1 AGTR1 
3 PECAM1 AGTR1 HK3 CAT 
4 TAL1 HSPB2 RASIP1 HK3 
5 HIST1H2BJ TEK CD34 TAL1 
6 AGTR1 MIF CAT RASIP1 
7 RASIP1 SASH1 TAL1 CD34 
8 CAV1 CAV2 FHL5 TTN 
9 EPAS1 CAV1 LDHA FHL5 
10 SASH1 NME1-NME2 ARHGEF15 LDHA 
11 S1PR1 CAT TTN ARHGEF15 
12 NME1 ENO1 CAV1 VSIG4 
13 FHL1 NUDT21 SASH1 GOLM1 
14 CAT TTN MIF SASH1 
15 CRYAB EPAS1 NME1 CAV1 
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