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ABSTRACT. To assess the relationship between the expression of 
a(1,2)-fucosyltransferase (FUT1 and FUT2) genes and resistance to 
Escherichia coli F18 in weaned pigs, FUT1 and FUT2 expression levels 
in Large White, Meishan, and Sutai pigs (with resistance to E. coli F18) 
were determined using real-time PCR. The results revealed that FUT1 and 
FUT2 expression levels were higher in the liver, lungs, kidneys, stomach, 
duodenum, and jejunum than in the muscle and heart. Medium FUT2 
expression levels were detected in the spleen, thymus, and lymph nodes. 
Intestinal FUT1 expression levels were higher in Sutai pigs than in Large 
White and Meishan pigs (P < 0.05). However, intestinal FUT2 expression 
levels were lower in Sutai pigs than in Large White and Meishan pigs (P 
< 0.05). FUT1 and FUT2 expression levels did not differ between Large 
White and Meishan pigs (P > 0.05). The results revealed that high FUT1 
expression levels and low FUT2 expression levels in the intestines of Sutai 
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pigs affected FUT1 and FUT2 enzymes, the synthesis of type 2 H and type 
1 H antigens, and E. coli F18 adhesion. Moreover, low FUT2 expression 
levels conferred resistance to E. coli F18.
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INTRODUCTION

Porcine post-weaning diarrhea (PWD) is a common disease that contributes to significant 
financial losses in the swine industry. Escherichia coli causing PWD and E. coli F18 is the most 
predominant and pathogenic bacteria in pigs (Van den Broeck et al., 2000; Boldin, 2008). Studies 
showed that the pathogenicity of E. coli F18 was dependent on the presence of specific recep-
tors expressed on the small intestinal surface of piglets (Bertin and Duchet-Suchaux, 1991). The 
a1-fucosyltransferase gene (FUT1) plays a major role in the synthesis of the E. coli F18 receptor 
(Vögeli et al., 1997). Meijerink et al. (1997, 2000) reported that a mutation in the M307 locus of 
FUT1 conferred resistance to E. coli F18 infections. However, genotypes at this locus have highly 
skewed distributions among Chinese porcine breeds, so the gene is not suitable for the breeding 
of disease resistance (Yan et al., 2003; Bao et al., 2008).

The participation of the FUT1 enzyme in the regulation of the ABH blood group antigen 
has been assessed by thin layer chromatography, negative ion mass spectrum, and proton mag-
netic resonance. Studies showed that the E. coli F18 receptor determinant is a type 1 H antigen of 
the ABH blood group (Coddens et al., 2009). The ABH blood group antigen is a glycosphingolipid 
on the plasmalemma of red blood cells, and the ABH blood group is determined by the types of 
sugars present in the glycosphingolipid. The precursor of the ABH blood group antigen is the H 
antigen. Moreover, the H enzyme is a(1,2)-fucosyltransferase, which is coded by FUT1 and FUT2, 
and this enzyme catalyzes the synthesis of the H antigen by connecting fucose with the H antigen 
precursor. Therefore, FUT1 and FUT2 play important roles in conferring resistance to E. coli F18 in 
Sutai pigs (Duroc x Meishan; Bao et al., 2012).

In this study, 35-day-old Large White (foreign porcine breed), Meishan (domestic porcine 
breed), and Sutai pigs (with resistance to E. coli F18) were used. The expression profiles of FUT1 and 
FUT2 in 11 tissues of the porcine breeds were determined using real-time PCR. The correlation be-
tween FUT1 and FUT2 expression levels and resistance against E. coli F18 in piglets was calculated.

MATERIAL AND METHODS

Animals and sample collection

Four E. coli F18-resistant Sutai piglets (Sutai Pig Breeding Center, Suzhou, Jiangsu) were 
selected based on birth weight, weaning weight, shape, and coat color similarities (Wu et al., 2007). 
Four Large White and four Meishan pigs (35 days old) from Kang Le Farming Co., Ltd. (Chang-
zhou) and Meishan Pig Conservation Breeding Co. (Kunshan), respectively, were selected and 
slaughtered. Tissue samples (heart, liver, spleen, lung, kidney, stomach, muscle, thymus, lymph 
nodes, duodenum, and jejunum) were collected, frozen in liquid nitrogen, and stored at -70°C.

Design and synthesis of real-time PCR primers

Real-time PCR primers were designed using the Primer-BLAST software based on the 
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published porcine FUT1 and FUT2 sequences in GenBank (Table 1), and glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH), transferrin-binding protein 1 (TBP1), and beta-actin (ACTB) genes 
were used as references. Primers were synthesized by Shanghai Invitrogen Biotechnology Co., Ltd.

Table 1. Real-time PCR primers and their sequences.

Gene Accession No. Primer sequences (5'3') Length (bp) 
FUT1 U70883 F: TTTTAAGCCCCCAAACTGCC 126 

R: TAAATCGACCCCATCAGCCTC 
FUT2 U70881.2 F: AATCCCTGACCTCACTCCGTG 123 

R: CGGAACTACAACTGCTGGCC 
GAPDH AF017079.1 F: ACATCATCCCTGCTTCTACTGG 187 

R: CTCGGACGCCTGCTTCAC 
TBP1 DQ845178.1 F: AACAGTTCAGTAGTTATGAGC 153 

R: AGATGTTCTCAAACGCTTCG 
ACTB XM_003124280.3 F: TGGCGCCCAGCACGATGAAG 149 

R: GATGGAGGGGCCGGACTCGT 
 

Total RNA extraction, reverse transcription, and real-time PCR

Total RNA was extracted from the 11-tissue samples using Trizol (TaKaRa, China). The 
integrity, purity, and concentration of total RNA samples were determined using 2.2% formaldehyde 
denaturalization gel electrophoresis and UV spectrophotometry. Total RNA was stored at -70°C 
prior to conversion to cDNA via reverse transcription.

The reverse transcription reaction mixture (10 µL total) consisted of 2 µL 5X PrimerScript 
buffer reaction solution, 0.5 µL PrimerScript RT enzyme mix I, 0.5 µL oligo dT, 0.5 µL random 
6-mers, 500 ng total RNA, and RNase-free H2O. The reverse transcription conditions were set at 
37°C for 15 min and 85°C for 5 s. The resulting cDNA was stored at 4°C.

cDNA was subsequently amplified using real-time PCR, and the real-time PCR mixture 
(20 µL total) consisted of 1 µL template, 0.4 µL 10 mM primers (forward and reverse), 0.4 mL 50X 
ROX Reference Dye II, 10 mL 2X SYBR Green Real-Time PCR Master Mix, and 7.8 µL ddH2O. 
The real-time PCR conditions were as follows: one cycle at 95°C for 30 s; 40 cycles at 95°C for 5 
s and at 60°C for 34 s; and a final step at 4°C. The dissociation curve was analyzed following am-
plification, and a dissociation curve Tm of 85 ± 0.8°C was used to determine the specificity of the 
amplification. Each sample was amplified three times, and the average was calculated.

Statistical analysis

The real-time PCR results were analyzed using the 2-DDCt method, where DDCt = (average 
Ct value of target genes in the test group - geometric mean value of Ct values of reference genes 
in the test group) - (average Ct value of target genes in the control group - geometric mean value 
of Ct values of reference genes in the control group). Statistical analyses were performed with 
the SPSS 15.0 software, and differences in FUT1 and FUT2 expression levels among the porcine 
breeds were analyzed using LSD multiple comparisons.

RESULTS

Melting and amplification curves from real-time PCR analyses

The real-time PCR results were analyzed with the Applied Biosystems Sequence detec-
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tion software (7500 Fast System SDS Software version 1.4). Both FUT1 and FUT2 exhibited a 
specific peak, and there were no primer dimers or non-specific products, which suggested that 
the amplification was specific. The FUT1 and FUT2 melting and amplification curves are shown in 
Figure S1.

FUT1 and FUT2 expression levels in the 11 tissues of the three porcine breeds

FUT1 and FUT2 were expressed in the 11 tissues of the three porcine breeds. Further-
more, the expression levels of the two genes were somewhat similar. The expression levels of both 
FUT1 and FUT2 were high in the liver, lungs, kidneys, stomach, duodenum, and jejunum, and they 
were low in the heart and muscle. FUT2 had medium expression levels in the spleen, thymus, and 
lymph nodes (Figures 1-3).

Figure 1. Expression levels of FUT1 and FUT2 in 11 tissues of Large White pigs.

Figure 3. Expression levels of FUT1 and FUT2 in 11 tissues of Meishan pigs.

Figure 2. Expression levels of FUT1 and FUT2 in 11 tissues of Sutai pigs.

http://www.geneticsmr.com/year2016/vol15-1/pdf/gmr7613_supplementary.pdf
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FUT1 and FUT2 expression levels in the duodenum and jejunum

E. coli adheres to receptors expressed on the surface of intestinal cells. Therefore, in this 
experiment, we analyzed the expression levels of FUT1 and FUT2 in the duodenum and jejunum. 
Sutai pigs had higher FUT1 expression levels than Large White and Meishan pigs (P < 0.05). How-
ever, FUT2 expression levels were lower in Sutai pigs than in Large White and Meishan pigs (P < 
0.05). There were no significant differences in FUT1 and FUT2 expression levels between Large 
White and Meishan pigs (P > 0.05; Figures 4 and 5).

Figure 4. Differential expression analysis of FUT1 in duodenum and jejunum.

Figure 5. Differential expression analysis of FUT2 in duodenum and jejunum.

DISCUSSION

PWD in piglets is caused by enterotoxins produced by E. coli F18 bacteria after binding 
to receptors on the small intestinal brush border. Therefore, E. coli F18 pathogenicity is dependent 
on the presence of specific intestinal receptors (Bertin and Duchet-Suchaux, 1991; Berschinger 
et al., 1990, 1993). Coddens et al. (2007) reported that E. coli F18 receptor expression levels in-
creased in Landrace pigs from 0 to 3 weeks of age, and they stabilized between 3 and 23 weeks 
of age. Unweaned piglets are not susceptible to E. coli because the milk antibodies confer protec-
tion against enteric infections (Deprez et al., 1986). In this study, the piglet specimens had been 
weaned for 1 week, and weaned piglets are very susceptible to E. coli F18 infections at this age 
(35 days old). The E. coli F18 receptor is a type 1 H antigen of the ABO blood group and a gly-
cosphingolipid derivative (Coddens et al., 2009). Studies reported that ABH blood group antigens 
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were primarily synthesized by the globo- and lactose-series of glycosphingolipid biosynthetic 
pathways (Hakomori, 2000). Moreover, H antigens were synthesized during the glycosphin-
golipid biosynthetic pathway, and neutral-, lactose-, and novel lactose-series glycosphingo-
lipid biosynthetic pathways were utilized based on the glycosphingolipid biosynthesis-globo 
series pathway (Kannagi et al., 1983). Therefore, the glycosphingolipid biosynthesis-globo-
series pathway plays an important role in the synthesis of the E. coli F18 receptor. According 
to the glycosphingolipid biosynthesis-globo-series pathway (Figure S2), FUT1 and FUT2 are 
involved in the synthesis of the intestinal receptor. In this study, 35-day-old Large White (for-
eign porcine breed), Meishan (domestic porcine breed), and Sutai pigs (with resistance to E. 
coli F18) were used, and FUT1 and FUT2 expression levels in 11 tissues of the three porcine 
breeds were analyzed using real-time PCR. Additionally, the correlation between FUT1 and 
FUT2 expression levels and resistance to E. coli F18 was calculated.

The expression profiles of the two genes of interest were similar among the breeds. Fur-
thermore, the expression levels of FUT1 and FUT2 were higher in the liver, lungs, kidneys, stom-
ach, duodenum, and jejunum than in other tissues. Saccharides are often the structural com-
ponents of hormones, enzymes, cell surface receptors, the cell matrix, and connective tissue. 
Accordingly, FUT1 and FUT2 were expressed in the liver, lungs, kidneys, stomach, and intestinal 
tissue. It is noteworthy that FUT2 had medium expression levels in the spleen, thymus, and lymph 
nodes (i.e., organs where lymphocyte and the other immune cells differentiate).

Studies reported that FUT1 controls the adhesion of E. coli F18 (Imberechts et al., 1996; 
Meijerink et al., 1997, 2000). However, Coddens et al. (2009) observed that the E. coli F18 receptor 
is a type 1 H antigen catalyzed by a2-fucosyltransferase that is encoded by FUT2 as opposed to 
a type 2 H antigen catalyzed by a1-fucosyltransferase that is encoded by FUT1, and Moonens et 
al. (2012) and Lonardi et al. (2013) validated these results. Additionally, FUT1 glycosyltransferase 
converts type 1 H precursors into type 1 H blood group antigens (Kyprianou et al., 1990; Liu et al., 
1998; Mathieu et al., 2004). FUT2 expression levels were significantly lower in E. coli F18-resistant 
piglets than those in E. coli 18-sensitive piglets, and Meijerink et al. (2000) reported that FUT2 
expression levels were high in sensitive individuals and insignificant in resistant subjects. The high 
FUT2 expression levels contributed to high levels of fucosyltransferase in E. coli F18-sensitive 
piglets. In this study, FUT1 expression levels were significantly higher in Sutai pigs than in Large 
White and Meishan pigs (P < 0.05). On the other hand, FUT2 expression levels in Sutai pigs were 
significantly lower than those detected in Large White and Meishan pigs (P < 0.05). Epidemiologi-
cal data revealed that morbidity rates associated with E. coli F18 infections did not differ signifi-
cantly between the domestic and foreign breeds. Additionally, the results revealed that there were 
no significant differences in FUT1 and FUT2 expression levels between Large White and Meishan 
pigs (P > 0.05). Therefore, the high expression of FUT1 and the low expression of FUT2 in Sutai 
pigs with resistance to E. coli F18 affected the activity of FUT1 and FUT2 enzymes, respectively. 
Furthermore, the formation of type 1 H antigens and type 2 H antigens reduced the adhesion of E. 
coli F18. Low FUT2 expression levels contributed to E. coli F18 resistance in Sutai pigs. Therefore, 
further studies should evaluate the antagonistic relationship between FUT1 and FUT2 expression 
levels, and the relationship between FUT1, FUT2, and other genes in the glycosphingolipid biosyn-
thetic pathway should also be examined.
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