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ABSTRACT. Conservation strategies routinely use optimization methods 
to identify the smallest number of units required to represent a set of 
features that need to be conserved, including biomes, species, and 
populations. In this study, we provide R scripts to facilitate exhaustive 
search for solutions that represent all of the alleles in networks with the 
smallest possible number of populations. The script also allows other 
variables to be added to describe the populations, thereby providing 
the basis for multi-objective optimization and the construction of Pareto 
curves by averaging the values in the solutions. We applied this algorithm 
to an empirical dataset that comprised 23 populations of Eugenia 
dysenterica, which is a tree species with a widespread distribution in the 
Cerrado biome. We observed that 15 populations would be necessary 
to represent all 249 alleles based on 11 microsatellite loci, and that the 
likelihood of representing all of the alleles with random networks is less 
than 0.0001. We selected the solution (from two with the smallest number 
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of populations) obtained for the populations with a higher level of climatic 
stability as the best strategy for in situ conservation of genetic diversity 
of E. dysenterica. The scripts provided in this study are a simple and 
efficient alternative to more complex optimization methods, especially 
when the number of populations is relatively small (i.e., <25 populations).
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INTRODUCTION

Systematic conservation planning or spatial conservation planning (SCP) aims to establish 
a set of localities (to form a conservation network) that are necessary to establish a conservation 
goal (Margules and Pressey, 2000; Sarkar and Illoldi-Rangel, 2010). Implementation of conservation 
actions faces constraints such as low budget or conflicts with other socio-economic interests; therefore, 
optimization methods need to be applied to define the minimum number of localities necessary 
to achieve the goals. Networks can also be designed by incorporating information regarding the 
constraints and conflicts as well as existing conservation areas (Cabeza and Moilanen, 2001).

In general, SCP has been applied using species (or higher-level units, such as biomes 
or vegetation formations) as conservation targets. However, there have also been discussions 
on how to conserve intraspecific genetic diversity, which began with the debate regarding the 
definitions of “evolutionarily significant units” and management units (Diniz-Filho and Telles, 2002, 
2006). More recently, Diniz-Filho et al. (2012) applied SCP reasoning to define a set of priorities 
at the population level using alleles from microsatellite loci as variables, where the goal was to 
establish the smallest number of local populations required to represent all known genetic diversity 
of the species (alleles). Schlottfeldt et al. (2015a,b) developed a more complex model based on 
a set of multi-objective algorithms, which also allowed several properties of the populations to be 
optimized simultaneously.

However, for relatively small and straightforward problems (i.e., small number of 
populations), it is possible to use much simpler algorithms and to search for all possible solutions 
to the representation problem using an exhaustive search strategy. In this study, we present a set 
of R scripts for finding solutions to these problems and to select the best (i.e., the smallest number 
of populations required to represent all of the alleles from a sample), as well as facilitating the 
simultaneous evaluation of other variables in the solution. We also applied the proposed algorithm 
to a real problem by finding the set of populations of Eugenia dysenterica, a tree species from the 
Cerrado biome, that are necessary to represent all of the alleles based on 11 microsatellite loci. We 
then compared the smallest possible networks required to represent the known genetic diversity 
with populations situated in more climatically stable regions.

MATERIAL AND METHODS

Algorithm and R scripts

The procedure began by creating a small function to decode a number into a binary vector 
with n populations, using the following R script:
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#function to decode a number into a vector
#x is the number to decode, and s is the length of the vector
decode <-function(x,n){
vec <-numeric(n)
for(j in 1:n){
vec[j] <-x %% 2
x <-floor(x/2)
}
return(vec)
}

The function above returns a vector comprising zeros and ones with n populations (a “solution”, 
where a value of 1 indicates whether a population is present in the network and 0 otherwise), and must 
be loaded in advance. Next, using the following script, we found the combinations of populations that 
form the 2n solutions and we accumulated some results from each of these solutions for further analysis.

pops <-nrow(FAbin)
nall <-ncol(FAbin)
X <-runif(pops,0,1) #defined here as a random variable for the example
nsim <-(2^pops)-1
sgrid <-matrix(0,nsim,3)
progress.bar <-txtProgressBar(min=0,max=nsim,style=3)
for(i in 1:nsim){
setTxtProgressBar(progress.bar,i)
popS <-decode(i,pops)
wpop <-which(popS>0)
BinS <-as.matrix(FAbin[wpop,])
A <-apply(BinS,2,sum)
rich <-sum(ifelse(A>1.0001,1,A))
Xsel <-as.matrix(X[wpop])
sgrid[i,1] <-sum(popS)
sgrid[i,2] <-rich
sgrid[i,3] <-mean(Xsel)
}
end(progress.bar)

The results in the matrix sgrid were obtained by creating and analyzing subsets from the 
original input matrix FAbin, which contains 1 if the allele is found in the population and 0 otherwise. 
The matrix FAbin can be obtained from the allele frequency matrix FA with n lines (populations) and 
p columns (allele frequencies) by

FAbin <-ifelse(FA >0, 1,0)

where FA is the matrix with allele frequencies. But we may also decide to exclude rare 
alleles, with low frequencies, and in this case it may be necessary to exclude some columns from 
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the matrix FAbin before the analysis (if this is not done the target above will be larger than feasible 
and no solutions would be found). This exclusion can be done by establishing a threshold (in the 
example below, 0.05) and using the following script

pa <-ifelse(FA>0,1,0)
threshold <-0.05
pres <-which(apply(FA,2,max)>=threshold,1,0)
FAbin <-pa[,pres]

Thus, if the threshold is equal to 0, then all of the alleles present will appear as 1 in FAbin, 
regardless of their frequencies.

The output matrix sgrid is set as three columns in the script given above, which in each 
solution comprise the number of populations in the network, the allelic richness, and the mean of 
a third variable (X). The variable X was defined above, for simplicity, as a random uniform variable 
in the populations, but must be actually another “extrinsic” variable measured in each population 
(see below) and it must be read as an independent object. Thus, other variables (actually, other 
descriptive statistics) can also be added to the algorithm (increasing the number of columns in 
sgrid), thereby allowing the description of solutions using other characteristics.

After running the script, it is possible to use the matrix sgrid for any further analyses of 
the solutions. For example, it is possible to find the solutions that contain all of the alleles (setting 
propA to a value of 1, below) with n number of populations in the solution, after which we can find 
the solutions with the smallest number of populations using the following script.

propA <-1 #percentage of alleles to represent
target <-round(propA*nall)
sbin <-numeric()
for(k in 2:pops){
v <-as.matrix(which(sgrid[,1]==k&sgrid[,2]>=target))
ns <-nrow(v)
sbin[k] <-ns
}
sb <-ifelse(sbin>0,1,0)
minpop<-min(which(sb==1))
best <-as.matrix(which(sgrid[,1]==minpop&sgrid[,2]>=target))
decode(best[1],pops) # or select other values, as for example best[1]
ngood<-nrow(best)
sgrid[best[1],] # look at best solutions and find the best for X (the last column of sgrid)
sgrid[best[2,]

The object minpop gives the minimum number of populations necessary to represent 
all alleles, whereas ngood gives how many solutions with this minimum number were found. 
If ngood is larger than 1, multiple solutions to the problem exists and one can select which 
solution to use based on extrinsic attributes of the solution, such as the mean of maximum 
value of the variable X measured in the populations. The mean values of X in each of the best 
solutions is obtained by
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#mean X
meanX <-numeric()
for(i in 1:ngood){
meanX[i] <-t(X)%*%decode(best[i],pops)/minpop
}

It is possible to choose among the alternative solutions based on these mean values (see 
below, in the empirical example). Alternatively, it is also common to calculate a frequency in which 
populations appear in all solutions, sometimes called “irreplaceability”. The vector of irrepleceability 
IRR can be obtained by

#If ngood>2...
irr <-matrix(0,ngood,pops)
for(i in 1:ngood){
irr[i,] <-decode(best[i],pops)
}
IRR <-apply(irr,2,mean)

Thus, using these scripts it is possible to find all the possible solutions (i.e., combinations of 
populations) and to evaluate them, e.g., by selecting the solutions that represent a given proportion 
of alleles with the smallest number of populations and those with the maximum/minimum value for 
the extrinsic variable X (if this maximum is of interest). Other scripts for dealing with the sgrid matrix 
are available from J.A.F. Diniz-Filho upon request.

Empirical application

The data used for our empirical example were described by Barbosa et al. (2015; also see 
Telles et al., 2013). In summary, 736 individuals of Eugenia dysenterica (Myrtaceae), a tree species 
that is distributed widely in the Cerrado region of Central Brazil, were sampled from 23 localities 
(i.e., populations) throughout most of the species range (Figure 1). Eleven microsatellite loci were 
genotyped, generating 249 alleles. The presence or absence of these alleles in each population 
(i.e., without excluding rare alleles) provided the basic matrix used by our algorithm (Diniz-Filho et 
al., 2012).

We also used Ecological Niche Models (ENMs) based on occurrence records for 
the species (see Terribile et al., 2012) to estimate the climatic stability in each of the 23 
populations by comparing the current climatic suitability with the suitability predicted for the 
year 2080, employing several algorithms for the ENM and climatic models (Diniz-Filho et al., 
2015, 2016).

RESULTS

We observed north-south gradients in the genetic diversity (HE) and in the principal 
coordinate of the pairwise FST matrix (Figure 2). These gradients coincided with the climatic 
stability patterns obtained using the ENMs, which showed that there will be a future shift in climatic 
conditions in the northern/northwestern part of the species range.
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Figure 2. Geographical patterns obtained for the analyses of 249 alleles from 11 microsatellite loci, including the first 
principal coordinate of pairwise FST matrix, the expected heterozygosity (HE), the climatic stability comparing ENM 
suitabilities from present to 2080, and the optimum solution in SCP, necessary to represent all alleles with the smallest 
number of populations (15) situated in localities with maximum climatic stability.

Figure 1. Geographic distribution of 23 populations of Eugenia dysenterica analyzed here (the shadow represents the 
distribution of Cerrado biome).
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For a set of 23 populations, there were 8,388,608 possible solutions, where the 23 populations 
were combined to form networks, with sizes that varied from one to 23. The SCP’s goal is to find the 
solutions that represent all 249 alleles with the smallest number of populations. Thus, after applying 
the scripts described above, we found that two slightly different networks satisfied this requirement, 
each with 15 populations. The relatively high number of populations required to represent all of the 
alleles was due to the fairly large number of rare alleles in some (or one) populations. In addition, after 
running 10,000,000 simulations to create random networks with N = 15 populations, we found that on 
an average only 235 ± 5 alleles were represented by chance alone and that the likelihood of retaining 
all of the alleles in a random solution was less than 1/10,000 (Figure 3).

Figure 3. Statistical distribution of the number of alleles represented in 10,000 stochastic combination of populations, 
showing that none of them was able to represent all 249 alleles.

The two networks with 15 populations differed in terms of their climatic suitability. One 
of them retained an average of 64.2% of its climatic suitability (Figure 2, lower left) whereas the 
other retained 61.7% (these solutions were only in one population). The descriptions of all the 
possible solutions are stored in the sgrid object, so it is possible to search for other solutions of 
interest even if they are not at the minimum. For example, it would be possible to select all of the 
solutions with k < 16 populations and to compare the climatic stability for all of them. Ultimately, 
it is more interesting from a conservation perspective, to use a solution with k =16 if the average 
climatic stability in the populations is much higher than that in the smallest possible set with k = 15. 
We can also evaluate how increasing the number of populations in the network is related to the 
climatic stability by plotting the highest stability in the populations with k = 15, 16, 17, etc. (Figure 
4), thereby forming a Pareto curve. In our example, the maximum stability was achieved with 
20 populations, and if this factor is actually important, we could adopt this solution, although the 
number of populations is much higher than the minimum required. This is actually the basis of the 
multi-objective optimization process, as described by Schlottfeldt et al. (2015a,b).



8J.A.F. Diniz-Filho et al.

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 15 (1): gmr.15017525

DISCUSSION

In this study, we presented simple R scripts to search for solutions that represent all of the 
alleles in networks with the smallest possible number of populations, and we also employed these 
scripts to analyze a dataset that comprised 23 populations of E. dysenterica. Because there are 
a relatively large number of alleles found in a unique population, this required number is relatively 
large. This opens the possibility of reducing the number of variables by assuming that very rare 
alleles would quickly disappear due to effects of genetic drift, and it would not be worthwhile to 
increase the size of the solution because of such rare alleles. For example, if rare alleles (i.e., with 
maximum frequencies lower than 0.05) are deleted from populations, about 16% of the alleles 
are deleted and the minimum solution reduces from 15 populations to 12 populations. Of course, 
excluding such alleles is only valid under the perspective that these alleles are neutral or quasi-
neutral and are being used just to assess overall genetic diversity in the species.

Moreover, all of the possible combinations of populations that can form networks are 
stored as binary numbers, so it is simple to evaluate these solutions using any other variables of 
interest (in our example, we evaluated climatic stability), as well as incorporating these variables 
when deciding between one solution or another. In our study case, selecting the climatic stability as 
an extrinsic variable to choose among solutions may be interesting because our previous analyses 
showed a correlation between climatic shifts since the last glacial maximum and current genetic 
diversity (Diniz-Filho et al. 2015), so selecting populations in more stable regions may provide a 
more resilient solution to ongoing climate changes.

The scripts presented above are limited to working within the number of distinct solutions 

Figure 4. Highest mean climatic stability in networks of Eugenia dysenterica with number of populations ranging from 
15 to 23.
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that the R platform is able to represent, i.e., the number of populations cannot be larger than the 
number of bits used to represent an integer by R. However, this is an exhaustive search process 
and the complexity of the problem increases as 2n, so it may be difficult to use this exhaustive 
search method with more than 25 or 30 populations (see below). For example, running the above 
algorithm with 23 populations (the empirical example described below) on a Dell desktop using an 
Intel i-5-3330S with a CPU running at 2.7 GHz and 6 GB of RAM memory required ca. 2.15 h. The 
complexity of the problem grows at 2n; therefore, increasing to 25 populations (for example) would 
require 9.8 h (2.15 x 2 x 2). Expanding the reasoning, approximately 11.5 days would be required 
to run the algorithm for 30 populations. In addition, the sgrid output matrix rapidly becomes difficult 
to work with, because a set of 25 populations generates a matrix with 33,554,432 lines and 3 
columns. For dealing with larger number of populations, it may be necessary to modify the script 
to avoid accumulating the matrix sgrid and to retain only minimum solutions (loosing flexibility in 
the analyses and not allowing building directly, for example, Pareto curve). Thus, if the problem 
involves more than 25-30 populations, we consider that other optimization algorithms should be 
used instead of our exhaustive search script (Diniz-Filho et al., 2012; Schlottfeldt et al., 2015a,b).

More complex algorithms and computer programs for SCP are available (e.g., Diniz-Filho 
et al., 2012; Schlottfeldt et al., 2015a,b), but they are not available as R scripts or packages at 
present, while the scripts presented in this study can be easily integrated with other population 
genetic analyses. In addition, our proposed algorithm may be computationally feasible when 
dealing with a relatively small number of populations (i.e., <25 populations). Due to constraints in 
field sampling and laboratory work, most studies on population genetics deal with a small number 
of populations. Thus, the algorithms and scripts presented in this study will be of interest to a large 
number of researchers in this field.
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