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ABSTRACT. Simple sequence repeats (SSRs) are highly informative,
polymorphic, and co-dominant Mendelian markers that provide an important
genomic resource for genetic research. Recently, the use of large-scale
transcriptome sequence has become a reliable and efficient approach
for the identification and development of new EST-SSR markers. In this
study, 8389 potential SSRs with a minimum of five repetitions for all motifs
were identified from 121,210 unigenes. Gene ontology analysis indicated
that the unigenes containing SSR loci participate in various biological
processes of regulation, growth, development, metabolism, and apoptosis
in wheat. As in many other plants, trinucleotide repeats were found to be
the most abundant repeat units with a frequency of 62.33%. A subset of 300
EST-SSRs was randomly selected for the applicability of EST-SSRs to be
evaluated. Of the 300 primer pairs tested, 177 (59%) yielded unambiguous
PCR products among five wheat cultivars. Using the Chinese Spring nulli-
tetrasomic line, 131 of the 177 EST-SSR primer pairs yielded products and
178 loci were found to be located on all the 21 wheat chromosomes. These
findings suggest that the novel EST-SSR markers, as a basis for future
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genetic linkage and gene tagging analysis, are a valuable tool for genetic
mapping, marker assisted selection, and comparative genome analysis.

Key words: Triticum aestivum L.; Transcriptome sequence;
Simple sequence repeats; Chromosome localization

INTRODUCTION

Microsatellites or simple sequence repeats (SSRs) are tandem repeat sequences of short
units of 2-6 nucleotides that occur frequently in all prokaryotic and eukaryotic genomes studied to
date (Koelling et al., 2012). Distributed randomly across the genomes of plants and animals, SSRs
are highly informative, polymorphic, and co-dominant Mendelian markers (Powell et al., 1996).
These characteristics make SSR markers useful in linkage mapping, genetic diversity analysis,
parental identification, DNA fingerprinting, and functional gene tagging. These SSR markers can
be isolated from both conserved coding regions and non-coding nucleotide sequences of all higher
organisms (Sraphet et al., 2011). The development of genomic SSRs, however, is relatively time-
consuming and expensive; but SSRs can alternatively be found in public sequence databases
of expressed sequence tags (ESTs) or cDNA (Zeng et al., 2010; Huang et al., 2011; Sraphet et
al., 2011; Koelling et al., 2012). Such SSRs are referred to as EST-SSRs. In recent years, EST-
SSR mining from coding sequences determined by RNA-seq technology has become increasingly
popular in plant research (Kaur et al., 2012; Li et al., 2012).

Common wheat, Triticum aestivum L. (2n = 6x = 42), is a major staple food crop in several
parts of the world in terms of its cultivation area and prevalent use as a food source. Although a
number of EST-SSRs have been developed from the published EST database (Yu et al., 2004;
Chen et al., 2005; Li et al., 2008), the development and application of EST-SSR markers from
transcriptome sequence in wheat are still largely limited compared, with those of EST-SSR markers
from other crop species.

In previous studies, we generated 40.88 Gb clean sequence data using lllumina
sequencing from wheat pistillody stamen (PS), pistil (P), and stamen (S), which corresponded to
121,210 putative unigenes (Yang et al., 2015).

We previously reported on the development of a comprehensive set of EST-SSRs based
on de novo transcriptome sequence from the wheat PS, P, and S. A total of 8389 EST-SSRs
from 121,210 unigenes were generated for the de novo transcriptome. The gene ontology (GO)
classification and characteristics of those EST-SSRs were assessed in this study. To evaluate the
applicability of the EST-SSRs developed, 300 EST-SSR primer pairs were randomly selected for
amplification using five wheat cultivars and chromosome localization using a nulli-tetrasomic line.
These newly developed EST-SSR markers will rapidly enrich the number of functional molecular
markers directly related to expressed regions of the genes in wheat and will therefore be valuable
in facilitating genetic mapping and comparative genome analysis in wheat.

MATERIAL AND METHODS
Plant materials

The pistillody wheat mutant HTS-1 and its sib-line CSTP were used for cDNA library
preparation and lllumina sequencing. The PS and P of the HTS-1 mutant line as well as in the S of
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the CSTP sib-line were selected at the heading stage for RNA extraction. Five wheat cultivars were
used to test the validity of the new developed EST-SSRs: Triticum aestivum L. var. Chinese spring
(CS), Triticum aestivum L. var. Three pistil (TP), Tritcum aestivum L. var. Mianmai 45 (MM45),
Triticum aestivum L. var. Neimai 9 (NM9), and Triticum aestivum L. var. Chuanmai 28 (CM28). The
assignment of EST-SSR markers to the specific wheat chromosomes was carried out using a set
of CS nulli-tetrasomic lines.

RNA isolation and cDNA library construction

For lllumina sequencing, total RNA was extracted from PS, P, and S using a modified
cetyltrimethylammonium bromide-based method (Chang et al., 1993) with a high salt concentration.
The RNA was further purified with the RNeasy Plant Mini Kit (Qiagen, Shanghai, China). The cDNA
library construction and sequencing with an Illlumina HiSeq 2000 were performed at the Novogene
Bioinformatics Institute (Beijing, China). The assembled unigenes were annotated using BLASTx
against the nonredundant protein database [National Center for Biotechnology Information (NCBI);
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi] and the unigenes were allocated to the corresponding
functional categories based on GO terms by Blast2GO (Conesa et al., 2005) with GO weight 2
(Huang et al., 2011).

Novel EST-SSR identification and primer design

All unigenes generated by deep transcriptome sequencing in wheat were screened
for SSRs using the SSRIT (Simple Sequence Repeat Identification Tool; www.gramene.org/db/
markers/ssrtool) software. In this study, SSRs containing a minimum five repetitions for all motifs
were included in the study. Primer pairs flanking the SSRs were designed using Primer 3 (Rozen
and Skaletsky, 2000) in accordance with core criteria for primers: predicted product size ranging
from 100 to 500 bp, GC content of between 40 and 60%, optimum primer length of 22 bp, and
melting temperature of between 50° and 60°C.

DNA extraction, PCR amplification and detection

Genomic DNA from five wheat cultivars and from Chinese Spring nulli-tetrasomic lines
were extracted from young leaves using a modified CTAB protocol (Liu et al., 2003). Amplification
by PCR was performed using a T-100 ThermalCycler (BIO-RAD) and reactions consisting of 2.0
mM MgCl,, 0.2 mM dNTPs, 0.75 U Tag DNA polymerase (TaKaRa Bio Inc., Dalian, China), 0.1 yM of
each primer, and 10 ng template DNA in a final reaction volume of 15 pL. The PCR conditions were
as follows: initial denaturation at 94°C for 2 min; 35 cycles of 94°C for 40 s, 55°-60°C (depending
on the T _ of the primer set used) for 45 s, and 72°C for 1 min; and final extension at 72°C for 10
min. The resulting PCR products were separated on 8% non-denaturing polyacrylamide gels at
200 V for 2-2.5 h and were then visualized using a rapid silver staining method (Liu et al., 2008).

RESULTS
Unigene sequences and GO analysis

The wheat cDNA library was sequenced using the lllumina Hiseq 2000 platform, yielding
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a total of 43.46 Gb raw reads. After removing short and low-quality reads and trimming off adapter
sequences, approximately 40.88 Gb high-confidence reads remained and were assembled into a
total of 121,210 unigenes with an average length of 695 bp. These unigenes were subjected to
further analyses.

GO was employed to identify the functional categories of the annotated unigenes and to
classify and annotate the transcripts with known proteins. Of the 8389 unigenes containing SSR
loci, 4818 unigenes were successfully associated with GO terms. The GO-annotated unigenes
were found to belong to the biological process, cellular component, and molecular function
groups and were classified into 47 categories at process level 2 (Figure 1). Among the biological
process group, cellular process (60.4%), metabolic process (57.9%), and single-organism
process (46.1%) were the most strongly represented categories. The cell (40.9%), cell part
(40.9%), organelle (29.7%), and macromolecular complex (23.3%) categories within the cellular
function group contributed the largest proportion of all annotations. In the molecular function
group, binding (63.2%) and catalytic activity (46.1%) constituted the two major categories,
followed by transporter activity (6.67%), nucleic acid binding transcription factor activity (5.21%),
and structural molecule activity (3.03%). Other components were represented at less than 3%.
These results suggest that the analyzed unigenes take part in various biological processes of
regulation, growth, development, metabolism, and apoptosis in wheat.

4818

Number of genes
482

48

Biological Process Cellular Component Molecular Function

Figure 1. Gene ontology classification of unigene sequences containing SSR loci from wheat. The results are
summarized in three main categories: biological process, cellular component, and molecular function.

Characteristics of EST-SSRs in the wheat transcriptome

SSRs were found to be highly abundant in the unigene dataset assembled in this study.
In total, 8389 potential SSRs with a minimum of five repetitions for all motifs were identified from
121,210 unigenes. The frequency of occurrence of SSR loci was one in every 10.04 kb of unigene
sequence. Among all repeat types, SSR length was distributed from 10 to 213 bp (average 16.76
bp). Incidences of different repeat types were assessed and 95.24% of the SSRs were found to
exist as either dinucleotide repeats (DNRs) or trinucleotide repeats (TNRs). The most abundant
repeat type among the SSRs was the TNR, comprising 62.3% of the total SSRs, followed by DNR
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(32.9%), tetranucleotide repeat (4.4%), pentanucleotide repeat (0.3%), and hexanucleotide repeat
(0.1%). Overall, the repeat unit number in the SSR loci was found to range from 5 to 20 (Figure 2A
and B). Most (98.96%) of the DNRs and TNRs were found to have 4-10 repeat units, while motifs
with more than 10 reiterations were rare (1.04%).
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Figure 2. Characterization of SSRs in the wheat transcriptome. A. Distribution of different SSR repeat motif types;
B. Number of different repeat motifs; C. Frequency distribution of major SSRs based on main motif sequence type.

The 20 types of major motifs and the frequencies of individual SSR units are shown in
Figure 2C. In this study, the most common type of all the motifs detected in wheat unigenes was
GA/TC (9.50%), followed by AG/CT (8.6%), TG/AC (5.75%), GT/AG (4.59%), AAC/GTT (4.52%),
AAG/CTT (4.24%), and AAT/ATT (4.01%). Other motifs (Figure 2C) were represented by less than
4.0% of the total SSRs.

SSR marker development and genetic diversity analysis

A total of 300 EST-SSR primer pairs located on 300 unigenes were randomly selected
and amplified using DNA templates extracted from five wheat cultivars (CS, TP, MM45, NM9, and
CM28). Of these EST-SSR primer pairs, 177 (59%) exhibited stable and repeatable amplification
(Figure 3). Despite multiple attempts at optimization of PCR conditions, 123 primer pairs did not
yield any product. This observation was attributed to sequence assembly errors and to primers
extending across splice sites with large introns (Dutta et al., 2011). This result highlights the
complexity of the common hexaploid wheat genome.

Of the 177 primer pairs, 60 EST-SSR markers generated a unified and poor polymorphic
band. A total of 117 of the primer pairs analyzed showed allelic polymorphisms and 401 alleles
were detected in total. The number of alleles per locus ranged from 1 to 6 (average 3.4; Figure 3).
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Figure 3. PCR products from wheat obtained using EST-SSR primer pairs detected by 8% non-denaturing
polyacrylamide gels. A. Primer pair comp94; B. primer pair comp167. Lane 1 = CS; lane 2 = TP; lane 3 = MM45; lane
4 = NM?9; lane 5 = CM28.

Chromosome localization of EST-SSR markers using a nulli-tetrasomic line

Using the Chinese Spring nulli-tetrasomic wheat line to further assess the abovementioned
177 primers, 131 EST-SSR primer pairs and 178 loci were located on all the 21 wheat chromosomes
(Tables 1 and 2; Figure 4), where 100 primer pairs yielded products with one chromosome, 18 with
two chromosomes, 11 with three chromosomes, and two with five chromosomes (Table 1). Of all
the 178 loci, only one locus was located on chromosome 4B, only two on chromosome 6D, while 13
loci were located on chromosome 1D. The chromosomes 2B, 2D, 3B, 4D, 5A, 5B, 5D, 6A, 7A, and
7D also had more loci than others. Sixty loci were located on the A genome, 54 on the B genome,
and 64 on the D genome. The most loci (35) were found to be located on group 5, while the least
(18 each) were located on groups 4 and 6 (Table 2).

DISCUSSION

Owing to the steady decrease in cost per sequenced nucleotide and increase in throughput
data, NGS technologies have become a powerful approach for the high-throughput discovery of
genes; they generate a large amount of sequence data for molecular marker identification (lorizzo
etal., 2011; Silva et al., 2013). Recently, de novo transcriptome assembly using lllumina sequences
has been successfully developed and widely applied in various important plant species including
rice, wheat, and maize (Lu and Lu. 2010; Li et al., 2010; Yang et al., 2015). Large-scale stamen-
and pistil-specific transcriptome analysis may provide useful reference data for systemic gene
expression profiling and for elucidation of the genetic mechanisms underlying wheat stamen and
pistil formation (Yang et al., 2015). In this study, the EST-SSR markers were developed based on
wheat pistillody stamen-, stamen-, and pistil-specific transcriptome sequence.

In this study, 8389 EST-SSRs were identified with motifs of 2-6 bp from 121,210 unigenes.
The abundance of SSRs was 10.4 kb/SSR on average, which is lower than the abundance (14.0
kb/SSR) in poplar and Arabidopsis (Cardle et al., 2000) as well as the abundances (20.0 and 23.8
kb/SSR, respectively) in cotton (Jena et al., 2011) and in soybean (Gao et al., 2003). The findings
reported here, however, differ from the abundance of 5.4 kb/SSR reported for wheat by Peng and
Lapitan (2005). This discrepancy may be due to the different sources of the ESTs used: Peng and
Lapitan used ESTs from an EST database, while the ESTs used in this study were from pistillody
stamen-, stamen-, and pistil-specific transcriptome sequence.
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Figure 4. Chromosome locations of EST-SSR markers using the Chinese Spring nulli-tetrasomic wheat line. A. Primer
comp 81; B. primer comp 115. Lane 1 = CS; lane 2 = N1AT1D; lane 3 = N1BT1A; lane 4 = N1DT1B; lane 5 = Dt2AS;
lane 6 = N2BT2D; lane 7 = N2DT2A; lane 8 = N3AT3B; lane 9 = N3BT3D; lane 10 = N3DT3B; lane 11 = N4AT4D; lane
12 = Dt4BS; lane 13 = Dt4DL; lane 14 = Dt4DS; lane 15 = N5AT5D; lane 16 = N5BT5D; lane 17 = N5DT5B; lane 18 =
NBATEB; lane 19 = N6BT6A,; lane 20 = N6DT6B; lane 21 = N7TAT7B; lane 22 = N7BT7A, lane 23 = N7TDT7B.

Table 2. Distribution of EST-SSR markers on wheat chromosomes.

Homologous group Genome Total
A B D
1 8 7 13 28
2 4 12 11 27
3 9 10 6 25
4 7 1 10 18
5 11 12 12 35
6 10 6 2 18
7 11 6 10 27
Total 60 54 64 178

Because genes have characteristic temporal and spatial expression patters, there were less
ESTs from the pistillody stamen-, stamen-, and pistil-specific transcriptome sequence than from the
EST database; moreover, accordingly, the number of SSRs was also lower. The fact that the EST-
SSRs in this study were tissue-specific means that the resulting data can be used for mapping of genes
associated with flower development in wheat.

The TNR motif was previously shown to be the most abundant SSR motif in wheat (Gao
et al., 2003; Thiel et al., 2003; Chen et al., 2005) and similar results were observed in the present
study. Among TNRs, the AAC/GTT motif was the most frequent in wheat, which is in accordance
with other reports on wheat (Gao et al., 2003; Chen et al., 2005). The DNR AG/CT and AC/GT
motifs were reported to be the most frequent repeats in barley (Thiel et al., 2003), while the AG/
CT repeat was frequently observed in wheat (Gao et al., 2003). In this study, the GA/TC motif was
the most abundant, followed by AG/CT, TG/AC, and GT/AC. Although the functional significance of
SSRs in plant transcript regions is not clear, the AG/CT motif, a homopurine-homopyrimidine stretch

Genetics and Molecular Research 15 (1): gmr.15017509 ©FUNPEC-RP www.funpecrp.com.br



Z.J.Yang et al. 12

present at a high frequency in the 5" untranslated region, reportedly plays a role in regulating gene
expression and nucleic acid metabolism in plants (Martienssen and Colot, 2001; Scaglione et al.,
2009; Woéhrmann and Weising, 2011).

A subset of 300 EST-SSRs was randomly selected for an evaluation of the applicability
of the EST-SSRs. Of the 300 primer pairs, 177 (59%) yielded unambiguous PCR products across
five wheat cultivars. The success rate of PCR amplification was lower than that reported for
cucumber (88.6%) (Hua et al., 2010). This difference may be a result of the complexity of the
genome of common hexaploid wheat. Of the 177 primer pairs, 117 showed allelic polymorphisms.
Nulli-tetrasomic lines are widely employed to assign molecular markers and genes due to the
precision associated with the line. Yu et al. (2004) located 80 EST-SSRs and 104 loci on wheat
chromosomes using nulli-tetrasomic lines, and Chen et al. (2005) located 93 EST-SSRs (193
loci) on wheat chromosomes. Li et al. (2008) located 139 EST-SSRs (240 loci) on the 21 wheat
chromosomes. In the present study, 131 EST-SSRs and 178 loci were located on the 21 wheat
chromosomes using nulli-tetrasomic lines. The chromosomal locations of EST-SSR loci provide a
basis for genetic mapping and gene identification.
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