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ABSTRACT. Control of the false discovery rate is a statistical method that 
is widely used when identifying differentially expressed genes in high-
throughput sequencing assays. It is often calculated using an adaptive 
linear step-up procedure in which the number of non-differentially expressed 
genes should be estimated accurately. In this paper, we discuss the 
estimation of this parameter and point out defects in the original estimation 
method. We also propose a new estimation method and provide the error 
estimation. We compared the estimation results from the two methods in 
a simulation study that produced a mean, standard deviation, range, and 
root mean square error. The results revealed that there was little difference 
in the mean between the two methods, but the standard deviation, range, 
and root mean square error obtained using the new method were much 
smaller than those produced by the original method, which indicates that 
the new method is more accurate and robust. Furthermore, we used real 
microarray data to verify the conclusion. Finally we provide a suggestion 
when analyzing differentially expressed genes using statistical methods.
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INTRODUCTION

Genomics research has revealed that biological conditions and disease stages are 
mostly characterized by differences in gene expression levels (DeRisi et al., 1997; Brown 
and Botstein, 1999; Trapnell et al., 2013). In recent decades, microarray technology has been 
used as a powerful tool in the quantitative analysis of gene expression (Pollack et al., 2002; 
Bunney et al., 2003; Smyth, 2004), and the emergence of next-generation sequencing (NGS) 
technologies has heralded an unprecedented revolution in genome research. RNA sequencing 
(RNA-Seq), one of the most successful applications of next-generation sequencing technologies, 
has played an important role in gene expression analysis (Mortazavi et al., 2008; Nagalakshmi 
et al., 2008; Wang et al., 2009). Both microarray data and RNA-Seq data are examples of high-
dimensional data characterized by low sample sizes (usually a dozen or dozens) and high 
dimensionality of variables (genes, typically hundreds, thousands, or even tens of thousands). 
Therefore, multiple comparisons are needed to identify differentially expressed genes from 
these data. Traditional methods have controlled the family wise error rate (FWER), which is 
the probability of committing any type I error. When the number of genes is large, however, the 
power of detecting differentially expressed genes decreases and truly differentially expressed 
genes may be missed. In practical research, the main aim is to identify the genes that have 
significant differences in expression among hundreds of genes; this plays an important role 
in gene mapping, especially in the recognition of pathogenic genes and the study of disease 
mechanisms (Burbelo et al., 2014; Rapin et al., 2014). In multiple comparisons, the meaningful 
index is the expected proportion of incorrectly rejected null hypotheses, as opposed to the 
probability of even one false discovery. Based on this, the false discovery rate (FDR) approach 
proposed by Benjamini and Hochberg was a pioneering achievement (Benjamini and Hochberg, 
1995). The classical approach requires stringent control of the FWER, with a conservative type 
I error rate controlled against any configuration of the hypotheses tested. The FDR approach 
controls the ratio of wrong recognition in an allowable range, and provides a suitable index for 
multiple testing of large-scale data. Following the seminal paper by Benjamini and Hochberg in 
1995, the concept of the FDR has been applied widely in large-scale data analysis. Benjamini 
and Liu (1999), Benjamini and Yekutieli (2001), Storey (2002), Storey and Tibshirani (2003), 
Benjamini et al. (2006), and many others have proposed improvements and extensions of the 
Benjamini and Hochberg method (Kang and Chun, 2011). The adaptive linear step-up (ALSU) 
procedure proposed by Benjamini et al. in 2006 is the most widely used among all the previous 
studies. Estimating the number of non-differentially expressed genes is a key step in the ALSU 
procedure. However, we found that the estimation method proposed in that procedure is not 
sufficiently accurate; although the mean of the estimates is very close to the true value when the 
procedure is repeated many times, the standard difference is very large. This introduces large 
random errors that lead directly to an imprecise final result. In this research, we devised a new 
method for estimating the number of non-differentially expressed genes, and demonstrated its 
superiority. The nature of RNA-Seq data has not yet been fully established, and more research 
is required to understand how these data respond to differential expression analysis (Tarazona 
et al., 2011). However, microarray technology has proven satisfactory and has wide clinical 
applications, so we employed microarray data to verify our method. The results could also offer 
a good reference for analyzing RNA-Seq data.
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MATERIAL AND METHODS

Multiple testing and FDR

Multiple testing refers to the simultaneous testing of several hypotheses. A P value test 
is performed on each hypothesis separately. Consider the problem of testing simultaneously m 
(null) hypotheses, of which 0m  are true and the remaining 01 mmm −=  are false. Let V denote 
the number of true null hypotheses that are erroneously rejected and let R be the total number of 
hypotheses that are rejected. Table 1 summarizes the situation in a traditional form.

Table 1. Multiple hypotheses testing.

 Not rejected Rejected Total 
True null U  V  0m  

Non-true null T  S  0mm   

 Rm   R  m  

 
It is assumed that the specific m hypotheses are known in advance. R is an observable 

random variable; U, V, S, and T are unobservable random variables. If each individual null 
hypothesis is tested separately at significance level α, then R increases with α. The process of 
multiple testing is actually the process of multiple comparisons. The primary issue of the process 
is to set a test criterion. For single hypothesis testing, the criterion usually used is to limit the 
probability of committing any type I error in a certain range; the test with the smallest probability 
of making a type II error and the larger test power is then determined. The range of the probability 
of committing any type I error α is the test level (also called the significance level). Therefore, 
in a single hypothesis test, the probability of a type I error at level α can be used to control the 
decision error. However, in multiple hypotheses testing, this approach is invalid. Assuming m tests 
are independent and each individual null hypothesis is tested separately at level α, the probability 
of making one or more type I error (FWER) will be given by m)1(1 α−− . As m increases, it tends 
towards 1. Thus, we must adopt a new approach to control the error in multiple hypotheses testing.

In 1995, Benjamini and Hochberg first proposed the FDR method and the procedure for 
its control. This new error control theory has attracted much attention from theoretical researchers 
and application scientists in recent years. FDR is defined as:

It is the expected proportion of the rejected null hypotheses that have been erroneously 
rejected. FWER controls errors in the direction of row Vm →0 , while FDR controls errors in 
the direction of column VR →  in Table 1. This seemingly simple conversion was a significant 
breakthrough. It not only raises the test power, but also improves traditional multiple hypotheses 
testing, which is too conservative. Thus, it provides a very appropriate error-measuring criterion 
for multiple comparisons of large-scale data. Storey and Tibshirani (2003) proposed estimations 
of 0m

 
when evaluating the FDR. Benjamini et al. (2006) incorporated this method into the FDR 

control procedure and the ALSU procedure as follows:
Let  H0l, H02, …, H0m be the tested null hypotheses of which iH 0 , the ith gene, is a non-
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differentially expressed gene, and the alternative hypotheses are 
iH1
; the ith gene is a differentially 

expressed gene. Consider each single test based on the corresponding P values mPPP ,,, 21 
. Let 

)()2()1( mPPP ≤≤≤ 

 
be the ordered P values, and let the null hypothesis corresponding to )(iP  be 

)(0 iH . Let each gene belong to either the differentially expressed gene set or the non-differentially 

expressed gene set, i.e., )(0 iH
 

is distributed between 0 and 1. If 0)(0 )1( π==iHP , then 

0)(1 1)1( π−==iHP , where 0π  is an unknown parameter of the proportion of true null hypotheses.

Step 1. Let }{#)( )( λλ ≤= iPr , where the number of i that satisfies λ≤)(iP ( mi ≤≤1 ); λ  is 

usually taken as 0.5.

Step 2. Estimate 0π  by
)1(
)(ˆ0 λ

λπ
−

−
=

m
rm , i.e., the number of true null hypotheses is estimated 

by 
λ
λ

−
−

=
1

)(ˆ 0
rmm .

Step 3. Estimate }
ˆ

:{maxˆ
0

)(1
γ

m
kPkk kmk

≤=
≤≤ using γ = 0.05 as the critical significance level.

Step 4. If such a k̂  exists, reject the k̂  hypotheses 
)(0)2(0)1(0 ,,, kHHH 


; otherwise, do not 

reject any of the hypotheses.

Step 5. Adjust )(iP  as. )}1,{min(min~
)()( kmkii P

k
mP


  

Steps 1 and 2 of the above procedure are used to estimate 0π . Thus, 0m
 
can be 

estimated by 00 ˆˆ πmm = . We found that this approach is very unstable because although the mean 

of the estimates of 0m  is very close to the true value when the procedure is repeated many times, 

the standard difference is very large. This causes large random errors because the procedure 

estimates 0m  
only once. As can be seen from the following steps, the estimation of 0m  is a crucial 

issue in the ALSU procedure, and the accuracy of the estimated value has a significant influence 

on the identification of differentially expressed genes, the control of the FDR, and the test power. 

Therefore, it is necessary to improve the estimation method.

Estimation method

If we assume the total number of genes is m , and the non-differentially expressed genes 
account for 0π , the number of non-differentially expressed genes is 00 πmm = . We can sort the 
P values, which are obtained by the expression comparison of the two groups of samples of each 
gene, in ascending order and denote them as { )(iP }. Thus, the number of genes whose P value 
is not more than )(iP  is simply i . If there are no differentially expressed genes, )(iP  is distributed 
uniformly in [0,1]. Therefore, i  and )(iP  satisfy the following linear relationship: )(0 iPmi = . Now 
suppose that there are 0mm −  differentially expressed genes. From the statistical point of view, 
their corresponding P values should be small and less than the significance level α , which leads 
us to reject the hypothesis 0H . On the other hand, because random errors can lead to type I 
errors, some non-differentially expressed genes are mistaken for differentially expressed genes. 
Their P values should also be less than the significance level α . We assume that the P values 
corresponding to these two classes of genes satisfy β<)(iP .

Let }:max{ )( β<= iPin , which is the number of differentially expressed genes we think 
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of. Then, when β≥)(iP , i.e., when 1+≥ ni , the relationship between i  and )(iP  is nPmi i += )(0 . 
Thus, we take 

)(iP  as the abscissa and i  as the ordinate, and fit them with a linear regression. The 
slope of the regression line is just 0m . Using the least-squares method, we obtained the following 
equation:

In a practical application, β  can be taken as the corresponding probability )(iP
 
when the 

interval ]1,[β  contains only the probability of non-differentially expressed genes. We can draw the 
scatter points of i  and )(iP , and then find the left endpoint of the interval in which i  and )(iP

 
show a 

linear relationship, and take its value as β . In general, β  can be taken as slightly larger, because 
as )(iP  increases, the linear relationship between i  and )(iP

 
becomes more and more obvious. 

Although this may lose a few )(iP
 
values, it has little effect on the calculation of 0m  because the 

number of genes is large. Figure 1 shows the relationship between )(iP  and its frequency; )(iP  and 
i  are simulated microarray data when 2000=m  and 80.00 =π  = 0.80 (Table 2). Figure 1a displays 
the frequency distribution of )(iP  in ]1,0[  with the interval 0.02. Figure 1b is a scatter diagram of i  
vs. )(iP , and shows that β  could be taken as 0.05, 0.1, or 0.2. Because of our computation and 
comparison, we recommend β  be taken as twice the significance level α . For example, α  is 
generally taken as 0.05, so β  could be taken as 0.1. This is the value we used throughout this 
article.

Figure 1. Relationship between )(iP  and its frequency; )(iP  and i  are simulated data (2000 genes). a. Frequency 
distribution of )(iP ; b. )(iP  vs i .
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( ) ( ) ( ) ( )

1 1 1 1 1
0

2 2 2 2
( ) ( ) ( ) ( )

1 1 1 1

1 1
2

1 1[ ] [ ]

m m m m m

i i i i
i n i n i n i n i n

m m m m

i i i i
i n i n i n i n

m niP i P iP P
m nm

P P P P
m n m n

         

       

  
 

 
 

    

   
 



6J. Wu et al.

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 15 (1): gmr.15017402

Table 2. Constitution of the microarray data.

Gene 
category 

Gene 
number 

Sample set 1S  Sample set 2S  
1…40 1…30 

Non-differentially expressed 
genes 

Gene 1 

)1,0(~11 NX  )1,0(~12 NX  

Gene 2 
… 

Gene 0m  

Differentially expressed genes 

Gene 0m +1 

)1,0(~21 NX  )1,2(~22 NX  
Gene 0m +2 

… 
Gene m  

 

Thus, the first two steps of the ALSU procedure can be revised as:

Step 1. Let }:max{ )( β<= iPin , where β  is usually taken as 0.1.

Step 2. When 1i n≥ + , all the points ),( )( iPi
 are fitted by linear least squares regression. 

The slope of the line is used to estimate 0m , i.e., the number of true null hypotheses.

From the ALSU control procedure, we know that the original method only used the number 

of i  that satisfied λ≤)(iP . Equation 1 shows that the present method uses more information about 

)(iP , so it should, in theory, provide a better estimate than the original method.

Error analysis

When the number of non-differentially expressed genes is estimated, there will inevitably 

be some errors that affect the number of differentially expressed genes identified by the ALSU 

procedure. When the error of estimating 0m  is m∆ , what will the change to the number of identified 

differentially expressed genes k  be? We discuss this problem in the following text.

Taking k  in the ordered )(kP  as the abscissa and the corresponding probability p  as 

the ordinate, then )(kP  increases monotonically with k  and is noted as )(kPp = . The number 

of differentially expressed genes identified by the ALSU procedure is }:{maxˆ
0

)(1
k

m
Pkk kmk

γ
≤=

≤≤
 

(γ  is the FDR level), namely the abscissas of the last intersection point of line k
m

p
0

γ
=  and 

curve )(kPp = . When the error of estimating 0m  is m∆ , the number of identified differentially 

expressed genes is }:{maxˆ
0

)(1
k

mm
Pkkk kmk ∆+

≤=∆+
≤≤

γ , namely the abscissas of the last intersection 

point of line k
mm

p
∆+

=
0

γ
 and curve )(kPp = . When 0>∆m , we have k

m
k

mm 00

γγ
<

∆+
, and thus 

kkk ˆˆ <∆+ . That is, 0<∆k  and the number of identified differentially expressed genes decreases. 

When 0>∆m , we get the opposite result. Figure 2 shows schematics of the curve )(kPp = , the 

line k
m

p
0

γ
= , and the line k

mm
p

∆+
=

0

γ  when 0>∆m .
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Figure 2. Schematics of curve )(kPp = , line k
m

p
0

γ
= , and line k

mm
p

∆+
=

0

γ .

From Figure 2, we see that at the two intersection points:

Thus, the absolute error and relative error of k  are:

If the number of identified differentially expressed genes is 0
ˆ mmk −= , and the corresponding 

ordinate is *p , we get )( 0
0

* mm
m

p −=
γ . Thus,

This is simply the FDR level. From the definition of FDR and the equation γ=
R
V

, we know that 
when 

0mmR −= , the number of differentially expressed genes that are wrongly identified is:

In general, there are fewer differentially expressed genes than non-differentially expressed genes. We 

can see from Table 1 that when 0mmR −= , the FDR level 
0mm

VFDR
−

=  is larger than the probability 

of making a type I error 0/ mV=α . The relationship between them is 
0

0

0

0

1 π
π

α −
=

−
=

mm
mFDR . For 

γ）（
00 m

k
mm
kkp −
∆+
∆+

=∆ (Equation 2)

(Equation 3)m
m
kpmpk ∆+

∆
+

∆
=∆ ）

0
0

ˆ
(
γγ

(Equation 4)
0

0 )(ˆˆ m
mmm

k
p

k
k ∆

+∆+
∆

=
∆

γ

(Equation 5)
0

*
0

mm
pm

−
=γ

(Equation 6)*
0 pmV =
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example, when 8.00 =π , the ratio is four. Therefore, we can control the probability of committing a 

type I error by controlling the FDR level. We can also have:

That is, we can compute the probability of committing a type I error using the FDR level. 

For example, when the FDR = 0.05 and 8.00 =π , we get 0125.0=α .

On the other hand, when 0mmR −=  and VT = , the probability of committing a type II 

error is:

The power of the statistical test T~ , which is the probability that the test correctly rejects 
the null hypothesis (

0H ) when the alternative hypothesis (
1H ) is true, is:

when 0mmR −= , we get:

RESULTS

Since microarray technology has proven adequate for clinical applications, we employed 
microarray data to prove the method described above. The results could also provide a good 
reference for analyzing RNA-Seq data.

Performance on simulated data

We analyzed simulated microarray data to estimate 0m  using the original and new 
methods, and tested and compared the results. First, we simulated the data from a gene chip. 
For convenience, we denoted the sample set of healthy people as 1S  (comprising 40 samples) 
and the sample set of cancer patients as 2S  (comprising 30 samples); the total number of genes 
was 2000 ( 2000=m ). For a non-differentially expressed gene, the microarray data in 1S  and 

2S  should have the same distribution, which is usually supposed to be a normal distribution: 
)1,0(N . On the other hand, for a differentially expressed gene, the microarray data in 1S  and 2S  

should have different distributions. We also assumed )1,0(N  in 1S  but )1,2(N  in 2S . The number 
of non-differentially expressed genes could be 00 πmm = . We drew 0m  samples with a )1,0(N  
distribution and a capacity of 40, which was denoted as X11. We also collected 0m  samples with 

FDRFDR
m

mm
0

0

0

0 1
π
πα −

=
−

= (Equation 7)

(Equation 8)FDR
mm

V
mm

T
=

−
=

−
=

00

β

(Equation 9)
00

~
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mm
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−
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(Equation 10)α
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an )1,0(N  distribution and a capacity of 30 which was denoted as X12. X11 and X12 constituted the 
non-differentially expressed gene data. We then drew 0mm −  samples with an )1,0(N  distribution 
and a capacity of 40, and denoted them as X21. We also generated 0mm −  samples with an )1,2(N  
distribution and a capacity of 30, and denoted them as X22 . X21 and X22 constituted the differentially 
expressed gene data. Thus, we derived a matrix with 2000 rows and 70 columns and utilized it as 
the simulated data of a gene chip (Table 2).

For each gene, the expression data in sets 1S  and 2S  were compared by t-test and the 
corresponding P values were sorted in ascending order. We then estimated 0m  with the ALSU 
procedure using the original and new methods. To ensure that the comparison results had statistical 
significance, we repeated the simulation 1000 times for different values of 0π  and analyzed the 
value of 1000 0m̂  calculated using the two methods.

To evaluate the accuracy of the estimated value, we used the following four indicators: 
mean, standard deviation (SD), range, and root mean square error (RMSE). The mean reflects the 
concentration trend of the data. The SD represents the discrete degree of the data. The range is 

the difference between the maximum and minimum values in a list of numbers, and can reflect the 

fluctuation range and the discrete degree of the data. The RMSE is defined as 
n

d
n

i
i∑

=1

2

 and is used 

to measure the differences between the estimated values and the true values, in which id  is the 

deviation between the estimated value and the true value for the ith estimate. This index is very 
sensitive to large errors; therefore, it is a good measure of accuracy. The smaller the index, the 
more accurate the estimated values are.

We took the value of 0π  on the interval [0.7, 0.95] with the step 0.05 and computed the 
mean, SD, range, and RMSE of each 0m  estimate corresponding to each 0π . Table 3 summarizes 
the estimates.

Table 3 shows that the mean of 0m  estimated using these two methods is very close to 
the true value. However, the SD, range, and RMSE derived using the new method are about 60% 
of the values obtained using the original method. This shows that the discrete extent of the data 
calculated using the proposed method is smaller, and the estimate is closer to the true value. Thus, 
the algorithm is more stable and robust.

SD = standard deviation; RMSE = root mean square error.

Table 3. Comparison of results of 0m  estimation using the two methods when X22 ~ N(2,1).

0  0m  Mean (original method/ 
proposed method) 

SD (original method/ 
proposed method) 

Range (original method/ 
proposed method) 

RMSE (original 
method/ 

proposed method) 
0.70 1400 1399.1/1399.7 38.37/21.63 268/140.5 38.36/21.62 
0.75 1500 1500.7/1500.5 38.95/22.35 240/142.5 38.93/22.35 
0.80 1600 1600.2/1600.3 41.11/22.98 274/147.6 41.09/22.97 
0.85 1700 1698.4/1699.6 41.19/23.87 254/153.3 41.20/23.86 
0.90 1800 1799.3/1800.2 41.61/24.80 272/161.6 43.59/24.79 
0.95 1900 1902.2/1901.0 44.37/24.80 294/170.2 44.39/24.81 

 

We chose  for further analysis and obtained the estimates of 0m  with the two 
methods by analyzing 1000 simulations. Testing using the function “lillietest” in the MATLAB 
software indicated that the two groups of data conformed to normal distribution. Figure 3 
shows the frequency distribution diagram and box plot of 0m̂  on the interval [1480, 1720] with 
a distance of 10.
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Figure 3. Values of 0m̂  for the new and original methods when . a. Frequency distribution diagram; b. box 
plots comparing the original and proposed methods.

From Table 3 and Figure 3, we observed that the 1000 0m̂  estimated using the new method 
conforms better to a normal distribution, with a mean value of 1600 and a smaller SD. Figure 3 
also shows that the value of 0m  estimated by the two methods is symmetrical; however, the 
estimations calculated using the new method are more concentrated and the number of abnormal 
values is significantly lower than that found using the original method. These results show that the 
estimates calculated using the new method were generally concentrated near the true value, and 
their SD, range, and RMSE were greatly reduced. Therefore, the results calculated using the new 
method are more accurate and the new method is more stable.

In the simulation mentioned above, we assumed the distributions of the differentially 
expressed and the non-differentially expressed genes were )1,0(N  and )1,2(N  respectively. In 
general, if two normal distributions have the same variance, the closer means would make it more 
difficult to distinguish between them. To further test the validity of the new method, we also carried 
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out the same simulation experiments when X22 was subjected to distribution )1,1(N  (the others 
parameters were not changed). The results are shown in Table 4. The results in Table 4 are similar 
to those in Table 3, which further illustrates that the new method provides better discrimination.

SD = standard deviation; RMSE = root mean square error.

Table 4. Comparison of results of 0m  estimation using the two methods when X22 ~ N(1,1).

0  0m  Mean (original method/ 
proposed method) 

SD (original method/ 
proposed method) 

Range (original 
method/ 

proposed method) 

RMSE (original 
method/ 

proposed method) 
0.70 1400 1401.5/1403.3 36.93/21.42 218/132.4 36.95/21.66 
0.75 1500 1500.4/1502.9 38.25/22.71 266/131.0 38.24/22.88 
0.80 1600 1599.0/1600.8 39.98/24.16 232/144.6 39.97/24.16 
0.85 1700 1701.6/1700.8 40.67/23.78 226/149.4 40.68/23.78 
0.90 1800 1797.9/1800.9 42.21/24.50 268/154.4 42.24/24.50 
0.95 1900 1902.7/1899.5 44.71/25.20 296/186.6 44.77/25.19 

 

Performance on real data

We also employed prostate cancer gene expression profiles to verify the new method. The 
dataset was downloaded from the National Center for Biotechnology Information Gene Expression 
Omnibus database (Barrett et al., 2005) (accession number: GSE6919). We selected 83 samples 
from the database, which included 18 normal samples and 65 primary tumor samples; each sample 
had 12,625 genes. The raw data were preprocessed using a robust multi-array average (RMA) 
procedure (Irizarry et al., 2003). The expression levels of the two groups of each gene were tested 
for homogeneity of variance and approximately 73% of genes passed the test. We computed the P 
value for each gene. If a gene passed the test, we used a t-test. Otherwise, we used Satterthwaite’s 
approximate t-test. We sorted the P values into ascending order. Setting the FDR control level to 
0.05, we estimated 0m , which represents the number of non-differentially expressed genes, using 
the original and new methods, and identified the differentially expressed genes associated with 
prostate cancer using the FDR method. The results are shown in Table 5.

Table 5 indicates that, compared with the original method, the number of 0m  estimated by 
the new method increased by 1085 (14%), which reduced the number of differentially expressed 
genes by 165 (7.7%). This shows that the estimation of 0m  influences the identification of 
differentially expressed genes using the FDR method. Not only is our method more accurate in 
theory, it also has practical value in the calculation of real microarray data.

From the value of )(iP , we know 0111.0)1968( =P , 0137.0)2133( =P , and 0026.0−=∆p . Taking 
77600 =m , 1085=∆m , 2133=k , and γ = 0.05 , we obtained 162-=∆k  using Equation 2. This result 

is very close to the reduction in the number of differentially expressed genes given in Table 5 (165), 
which further verified the accuracy of Equation 2.

The number of non-differentially expressed genes 0m  estimated by the proposed method 

*normal vs tumor.

Table 5. Calculated results of microarray data from prostate cancer samples.

Dataset Accession 
number 

Number of 
samples* 

Number of 
genes 

0m̂  No. of differentially expressed genes 

Original 
method Proposed method Original method Proposed method 

Chandran [21] GSE6919 18:65 12,625 7760 8845 2133 1968 
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was 8845, so the number of differentially expressed genes was 12,625 - 8845 = 3780. If the number 
of identified differentially expressed genes is 3780, the corresponding P value is 0675.0)3780( =P . Using 
Equations 5-10, we can determine that the FDR level was 0.158. So the number of wrongly 
identified genes was 597 out of a total number of 3780, and the probability of committing any type I 
errors α  was approximately 0.07. The test power was 842.0=T  and the probability of committing 
any type II errors was 0.158.

DISCUSSION

Estimating the number of true null hypotheses is one of the crucial issues in multiplicity testing 
(Kang and Lee, 2012). We have improved the stability of the estimation method in the classical ALSU 
procedure and present the new method here. The estimation results of the two methods were compared 
using simulated microarray data with mean, SD, range, and RMSE as evaluation indices. The new 
method was also verified using data from actual gene expression profiles. All the results indicated 
that our method effectively improved the stability and accuracy of the estimation of 0m . Thus, it further 
improved the accuracy of identifying differentially expressed genes using the FDR method.

The existing methods to identify differentially expressed genes determine the FDR level 
γ first, and then identify differentially expressed genes using the FDR method according to γ 
(Rapaport et al., 2013; Colquhoun, 2014; Frazee et al., 2014). It is important to note that the number 
of differentially expressed genes identified by this method will vary with different values of γ, which 
is not the true number of differentially expressed genes. For example, for the above prostate cancer 
microarray data, we identified 1968 differentially expressed genes when γ = 0.05. While selecting 
γ = 0.01, we identified 908 differentially expressed genes. However, in fact the data contain about 
3780 differentially expressed genes by our estimation. Therefore, we suggest that we should add 
the following content when analyzing differentially expressed genes using statistical methods: if we 
have a method that can estimate the number of differentially expressed genes accurately, we can 
use this number to calculate the identification criteria. The FDR method can then conversely be 
used to determine the FDR level, the number of misidentifications, the probability of committing any 
type I or type II errors, and the power of the statistical test. All of these issues can be solved using 
Equations 5-10. Thus, the number of differentially expressed genes identified by the new method 
is consistent with the true situation. We also obtained a general understanding of the number of 
misidentifications and other information. This provides us with a more comprehensive understanding 
of identification. Moreover, when the FDR level is controlled, the probability of committing type I errors 
is also controlled. Traditional methods control the errors in the direction of row Vm →0 , and the FDR 
controls the error in the direction of column VR →  in Table 1. If this seemingly simple conversion is 
a breakthrough in statistics, it follows that the above suggestion, which first determines the number 
of differentially expressed genes and then determines the test level, is also a breakthrough for 
determining the number of differentially expressed genes.
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