

Short Communication

Sequence analysis of the growth hormone gene of the South American catfish *Rhamdia quelen*

B.S. Vaz¹, G.M. Cerqueira^{2,4}, J.C. Silva¹, V.H.B. Manzke³, C.G.A. Moreira¹ and H.L.M. Moreira¹

¹Laboratório de Engenharia Genética Animal, Centro de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brasil
²Laboratório de Biologia Molecular, Centro de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brasil
³Conjunto Agrotécnico Visconde da Graça, Pelotas, RS, Brasil
⁴Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brasil

Corresponding author: H.L.M. Moreira E-mail: heden.luiz@gmail.com

Genet. Mol. Res. 9 (4): 2184-2190 (2010) Received December 6, 2009 Accepted April 14, 2010 Published November 9, 2010 DOI 10.4238/vol9-4gmr708

ABSTRACT. *Rhamdia quelen* is an important Neotropical catfish species for fisheries and aquaculture in southern Brazil, where it is called Jandia. Like other native Brazilian species of economic importance, *R. quelen* genetics needs more attention for animal breeding programs. The growth hormone gene is known to be linked to a number of molecular markers and quantitative trait loci. We sequenced the coding region of the growth hormone gene with the primer walking technique. As in other Siluriformes, the *R. quelen* growth hormone gene has four introns and five exons, in a 1465-bp coding region. The tertiary structure of the encoded protein was predicted by bioinformatics; it has four α -helix structures connected by loops, which form a compressed complex maintained by two disulfide bridges.

Key words: *Rhamdia quelen*; Siluriformes; Growth hormone; Bioinformatics; Primer walking