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ABSTRACT. In this study, bioinformatic analysis of gene expression data 
of head and neck squamous cell carcinoma (HNSCC) was performed to 
identify critical genes. Gene expression data of HNSCC were downloaded 
from the Cancer Genome Atlas (TCGA) and differentially expressed 
genes were determined through significance analysis of microarrays. 
Protein-protein interaction networks were constructed and used to identify 
hub genes. Functional enrichment analysis was performed with DAVID. 
Relevant microRNAs, transcription factors, and small molecule drugs were 
predicted by the Fisher exact test. Survival analysis was performed with 
the Kaplan-Meier plot from a package for survival analysis in R. In the five 
groups of HNSCC patients, a total of 5946 DEGs were identified in group 1, 
4575 DEGs in group 2, 5580 DEGs in group 3, 8017 DEGs in group 4, and 
5469 DEGs in group 5. DEGs in the cell cycle and immune response were 
significantly over-represented. Five PPI networks were constructed from 
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which hub genes were acquired, such as minichromosome maintenance 
complex component 7 (MCM7), MCM2, decorin (DCN), retinoblastoma 
1 (RB1), and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
activation protein gamma (YWHAG). No significant difference in survival 
was observed among the 5 groups; however, a significant difference 
existed between two combined groups (groups 1, 3, and 5 vs groups 2 and 
4). Our study revealed critical genes in HNSCC, which could supplement 
the knowledge about the pathogenesis of HNSCC and provide clues for 
future therapy development.
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INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common type of 
cancer worldwide, accounting for about 5% of all malignancies. Risk factors include nicotine and 
alcohol consumption and human papilloma virus (HPV) infection (Zur Hausen, 2002). Previous 
studies have identified molecular mechanisms contributing to the pathogenesis of HNSCC. HPV 
oncoproteins E6 and E7 are involved in tumorigenesis and are known to induce degradation of 
the tumor suppressors p53 and pRB, respectively (Pannone et al., 2011). Lack of p53 mutation 
(Westra et al., 2008) and p16 proteinover expression (Kumar et al., 2008) are also linked to HPV-
related HNSCC. Increased epidermal growth factor receptor gene copy number is also associated 
with poor prognosis in HNSCC (Chung et al., 2006).

MicroRNAs (miRNAs) are implicated in the development of HNSCC. Nohata et al. 
(2011) found that tumor suppressive miRNA-375 regulates oncogene astrocyte elevated gene-
1/metadherin (AEG-1/MTDH) in HNSCC (Nohata, 2011). MiR-133αdirectly regulates glutathione 
S-transferase P1 (GSTP1), a protein that suppresses cell apoptosis in HNSCC (Mutallip et al., 
2011). Transcription factors (TFs) such as nuclear factor-κB (NF-κB), activator protein-1 (AP-1), 
and nuclear factor-interleukin-6 (NF-IL6) are constitutively active in human HNSCC cell lines 
(Ondrey et al., 1999). Inhibition of NF-κB can attenuate resistance of HNSCC to TNF-α caspase-
mediated cell death (Duffey et al., 2000), suggesting the critical role of NF-κB. Sex determining 
region Y-box 2 (SOX2) (Freier et al., 2010) and protein C-ets-1 (Horvath et al., 2005) are also 
involved in the pathogenesis of HNSCC.

Despite these findings, the 5-year survival rate for HNSCC patients remains relatively 
unchanged at 50%. Therefore, more studies are necessary to better understand the pathogenesis 
of HNSCC and provide more efficient therapies. In the present study, we analyzed existing gene 
expression data with the latest bioinformatic tools with the aim of identifying key genes, miRNAs, 
and TFs in HNSCC.

MATERIAL AND METHODS

Gene expression data

Gene expression data were downloaded from the Cancer Genome Atlas (TCGA) using 
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TCGA-Assembler and package TCC was used for data normalization. A total of 541 samples 
were collected with 10629 genes, including 498 HNSCC samples and 43 normal controls. Missing 
values were filled with “1”, and then log2 transformation was applied. HNSCC patients were divided 
into groups using non-negative matrix transformation (NMF) (Rossini et al., 1994) based upon the 
cophenetic correlation coefficient (Farris, 1969). The K value was tested to generate a maximum 
cophenetic correlation coefficient.

Screening of differentially expressed genes (DEGs)

Significance analysis of microarrays (SAM) (Larsson et al., 2005) was adopted in 
differential analysis, which can reduce the false-positive rate (FDR) in the multiple testing. P < 0.05 
and log (fold change) <1 were set as the cut-off to identify DEGs.

Construction of protein-protein interaction networks

Protein-protein interaction (PPI) networks were constructed with information from the 
human protein reference database (HPRD) (Keshava Prasad et al., 2009). Interactions with a 
Pearson correlation coefficient >0.5 were retained in the PPI networks. Gene regulatory networks 
were also constructed with information from cGRNB (http://www.scbit.org/cgrnb/) (Tu et al., 2009; 
Yu et al., 2012), including both miRNA- and TF-target gene regulatory relationships. Relevant small 
molecules drugs were predicted using DrugBank (http://www.drugbank.ca/).

Functional enrichment analysis

Gene Ontology (GO)-enrichment analysis and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway-enrichment analysis were performed with the database for annotation, 
visualization, and integrated discovery (DAVID) (Dennis et al., 2003).

Screening of relevant miRNAs, TFs and drugs

Using the databases described above, target genes of certain miRNAs, TFs, and drugs 
can be obtained; they were defined as Mi. The DEGs for each group of HNSCC patients were 
defined as N. Fisher’s exact test (Liao et al., 2006) was used to test the significance of the overlap 
between Mi and N. P < 0.05 was set as the cut-off to identify relevant miRNAs, TFs and drugs for 
each group of DEGs.

The algorithm was as follows:

where a is the number of genes they belong to DEGs and the targets of miRNAs, TFs and drugs; 
b is the number of genes they belong to the targets of miRNAs, TFs and drugs, but not DEGs; c is 
the number of genes they belong to DEGs, but not the targets of miRNAs, TFs and drugs; d is the 
number of genes they neither belong to DEGs, nor the targets of miRNAs.
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Survival analysis

Survival analysis was performed for each group of HNSCC patients with a Kaplan-Meier 
plot using package survival of R.

RESULTS

HNSCC groups

The box plot of the pre-treated data is shown in Figure 1. A good performance of 
normalization was obtained. The coefficient of variation was calculated for each gene and the 
top 1500 genes were selected for grouping. The K value was set to “4” to generate the highest 
cophenetic correlation coefficient (Figure 2). Finally, HNSCC patients were divided into 5 groups. 
Group 1 had 100 samples, group 2 had 168 samples, group 3 had 106 samples, group 4 had 76 
samples, and group 5 had 47 samples.

Figure 1. Box plot of the normalized gene expression data. The abscissa contains 100 samples randomly selected from 
all 498 HNSCC samples and the ordinate represents the gene expression levels of the genome. Good performance 
of normalization was achieved.
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DEGs and over-represented functions

Package samr of R was used to identify DEGs in each group. A total of 5946 DEGs were 
identified in group 1, 4575 DEGs in group 2, 5580 DEGs in group 3, 8017 DEGs in group 4, and 
5469 DEGs in group 5 (Figure 3). DEGs included in more than three groups were selected for 
further analysis. Functional enrichment analysis of the overlapping 6504 DEGs revealed that cell 
cycle and immune response were significantly over-represented (Table 1). In addition, a heat map 
was generated with the expression levels of the top 500 DEGs (sorted by P value) (Figure 4). 
Different expression patterns existed among the 5 groups.

Figure 2. Summary of gene expression data. A. Evaluation of the K value, B. correlation matrix of subgroups, and C. 
heat map of expression of core genes.

Figure 3. Venn diagram showing the overlap of differentially expressed genes in A. groups 1-4 and B. groups 2-5.
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Figure 4. Heat map of gene expression based upon the top 500 differentially expressed genes.

Source	 Name	 P value (Bonferroni corrected)

REACTOME	 Cell cycle, Mitotic	 1.10E-20
REACTOME	 Cell cycle	 4.24E-12
KEGG	 Huntington’s disease	 1.74E-11
REACTOME	 M-phase	 5.76E-10
REACTOME	 Mitochondrial protein import	 2.89E-09
REACTOME	 Mitotic G1-G1/S phases	 1.09E-08
KEGG	 Ubiquitin-mediated proteolysis	 1.17E-08
REACTOME	 Cytokine signaling in immune system	 1.41E-08
REACTOME	 Mitotic metaphase and anaphase	 2.75E-08
REACTOME	 Mitotic anaphase	 4.86E-08
REACTOME	 S-phase	 1.14E-07
REACTOME	 Membrane trafficking	 1.47E-07
KEGG	 Non-alcoholic fatty liver disease (NAFLD)	 2.03E-07
KEGG	 HTLV-I infection	 4.41E-07
REACTOME	 Class I MHC-mediated antigen processing & presentation	 4.41E-07

Table 1. Top 15 pathways over-represented in more than 2 groups of differentially expressed genes.

Relevant miRNAs, TFs, and drugs

Relevant miRNAs, TFs, and drugs were identified, with the number of them in all five 
groups as follows: miRNA, 33 (for group 1), 22 (for group 2), 52 (for group 3), 331 (for group 4), and 
52 (for group 5); TF, 63 (for group 1), 40 (for group 2), 46 (for group 3), 58 (for group 4) and 55 (for 
group 5); and drugs 1 (Alendronate, for group 1), 0 (for group 2), 0 (for group 2), 0 (for group 4), and 
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2 (Bortezomib, Flavin adenine dinucleotide, for group 5). The top 5 regulators (sorted by P value) 
are listed in Table 2. Sp1 transcription factor (SP1) and DAN domain family member 5 (DAND5) 
were common regulators in several groups while some TFs were unique to certain groups such 
as transcription factor activating protein 2α (AP-2α) for group 2 and E2F transcription factor (E2F) 
for group 5. Groups 1, 3, and 5 shared the same top 5 TFs, indicating high similarity between the 
groups. No common miRNAs and small molecule drugs were observed.

	 microRNAs	 Transcription factors	 Drugs

Group1	 miR-520a-5p, miR-1304, miR-124, miR-1203, miR-583	 SP1, DAND5, PSG1, ELK1, PAX5	 Alendronate
Group2	 miR-421, miR-569, miR-33b, miR-520a-5p, miR-596	 SP1, DAND5, PSG1, ELK1, AP-2alphaA	 N/A
Group3	 miR-613, miR-339-5p, miR-605, miR-1251, miR-922	 DAND5, PSG1, SP1, ELK1, PAX5	 N/A
Group4	 miR-548d-5p, miR-1283, miR-548a-5, miR-548h, miR-548b-5p	 DAND5, PSG1, SP1, ELK1, PAX5	 N/A
Group5	 miR-34b, miR-22, miR-330-3p, miR-671-5p, miR-548c-3p	 DAND5, PSG1, SP1, ELK1, E2F	 Bortezomib, Flavin adenine
			      dinucleotide

Table 2. Top 5 relevant microRNAs, transcription factors, and drugs in each group.

PPI networks

One PPI network was constructed for each of the five groups: network 1 (for group 1) 
contained 520 interactions and 511 genes; network 2 (for group 2) contained 409 interactions 
and 394 genes; network 3 (for group 3) included 454 interactions and 485 genes; network 4 
(for group 4) included 852 interactions and 893 genes; and network 5 (for group 5) contained 
1416 interactions and 1209 genes. The degree was calculated for each node and the top 10 hub 
genes are listed in Table 3 for each PPI network. Some group-specific hub genes were identified, 
including minichromosome maintenance complex component 7 (MCM7), MCM2, decorin (DCN), 
retinoblastoma 1 (RB1), and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation 
protein gamma (YWHAG).

           Group 1		             Group 2		             Group 3		            Group 4		             Group 5

Genes	 Degree	 Genes	 Degree	 Genes	 Degree	 Genes	 Degree	 Genes	 Degree

CDK1	 21	 CDK1	 23	 FN1	 14	 EP300	 21	 EP300	 39
PCNA	 12	 CDK2	 14	 EP300	 13	 RB1	 16	 CDK1	 34
FN1	 12	 FN1	 12	 CDK2	 13	 SP1	 14	 YWHAG	 31
CDK2	 12	 PCNA	 11	 CDK1	 13	 CDK1	 14	 CREBBP	 23
FYN	 12	 MMP2	 11	 COL1A1	 12	 CDK2	 14	 SP1	 20
EP300	 11	 FYN	 11	 MMP2	 10	 CREBBP	   9	 CDK2	 20
MMP2	 10	 CD4	   8	 PCNA	   9	 TAF1	   8	 PCNA	 19
MCM7	   9	 MCM2	   8	 SPARC	   8	 RBBP4	   8	 BRCA1	 18
COL1A1	   9	 EP300	   7	 DCN	   8	 FN1	   8	 EGFR	 17
CD4	   8	 SPARC	   7	 COL1A2	   8	 YWHAG	   8	 STAT3	 17

Table 3. Top 10 hub genes in each protein-protein interaction network.

Survival analysis results

Information regarding survival time was collected from the TCGA and then analyzed by 
the Kaplan-Meier method to study the difference in survival time among the 5 groups. A total 
of 161 patients out of 497 had died, that is, 30, 62, 34, 24, and 11 patients from groups 1 to 5, 
respectively. No significant difference was observed among the 5 groups (P = 0.104). As shown 
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in Figure 5A, the survival curves of groups 1, 3, and 5 were similar while those of groups 2 and 4 
were also similar. This was in accordance with the TFs identified between the groups. Groups 1, 
3, and 5 were then combined as m-group 1, while groups 2 and 4 were combined as m-group 2. A 
significant difference (P = 0.00793) in survival time between the two groups was then revealed by 
the log-rank test (Figure 5B).

Figure 5. Survival curves for A. all 5 groups and B. the two combined groups (m-group 1 = groups 1, 3, and 5 and 
m-group 2 = groups 2 and 4).

DISCUSSION

In the present study, a total of 541 HNSCC samples were collected, which were further 
divided into 5 groups. A total of 5946 DEGs were identified in group 1, 4575 DEGs in group 2, 
5580 DEGs in group 3, 8017 DEGs in group 4, and 5469 DEGs in group 5. Functional enrichment 
analysis of the overlapping 6504 DEGs revealed that targets involved in cell cycle and immune 
response were significantly over-represented. Relevant miRNAs, TFs, and drugs were predicted 
by Fisher’s exact test. To further identify critical genes in the development of HNSCC, PPI networks 
were constructed and hub genes were identified. In addition, survival analysis was performed for 
the 5 groups of HNSCC patients.

According to the functional enrichment analysis results, genes in cell cycle and immune 
response were significantly over-represented in the DEGs. Cell cycle and immune response are 
closely associated with tumorigenesis, which is confirmed by our analysis. We identified several 
relevant miRNAs and TFs, several of which have been shown to be involved in HNSCC. MiR-124 
acts as a tumor suppressor gene by inhibiting expression of integrin beta-1 (Perez-Sayans et 
al., 2012) and it has been found to be downregulated in HNSCC (Nohata et al., 2013). Aberrant 
overexpression of miR-421 downregulates the expression of ataxia-telangiectasia mutated 
protein (ATM) and causes clinically manifested tumor radio sensitivity (Mansour et al., 2013). It 
has been reported that paired box (PAX) is inactivated by cancer-specific promoter methylation 
(Guerrero-Preston et al., 2014). Printz et al. (2014) indicated that HNSCC patients with greater 
PAX5 methylation and p53 mutations have worse overall survival. Zhang et al. (2000) found that 
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overexpression of E2F transcription factor 1 (E2F-1) plays a positive role in cell cycle re-entry 
from quiescence and is associated with increased invasiveness in vivo. However, Kwong et al. 
(2003) reported that overexpression of E2F-1 is associated with increased disease-free survival 
in squamous cell carcinoma of the anterior tongue. In addition, ETS domain-containing protein 1 
(ELK1)is involved in the antiangiogenic and antitumor activities of insulin-like growth factor binding 
protein-3 (IGFBP-3) (Kim et al., 2011). Further research on these miRNAs and TFs may provide 
important clues to uncover the molecular mechanisms underlying HNSCC.

Critical genes were also revealed by PPI network analysis. E1A binding protein p300 
(EP300) is a histone acetyltransferase that regulates transcription via chromatin remodeling 
and is important in the processes of cell proliferation and differentiation. Alteration in EP300 
expression is much more prominent in HNSCC lines (Martin et al., 2014) and we speculate it 
might play a role in the development of HNSCC. Matrix metallopeptidase 2 (MMP2) is capable 
of cleaving components of the extracellular matrix and is thus involved in signal transduction. 
Previous studies have demonstrated that high levels of MMPs are expressed during HNSCC in 
vivo and that inhibition of these enzymes in vitro and in mouse models decreases invasion and 
metastasis (Rosenthal and Matrisian, 2006). It has been reported that genetic polymorphisms 
in the promoters of MMP2 and TIMP metallopeptidase inhibitor 2 (TIMP2) may be associated 
with the development and aggressiveness of HNSCC (O-Charoenrat and Khantapura, 2006). 
Osteonectin (SPARC) is a cysteine-rich acidic matrix-associated protein that is associated with 
tumor suppression but has also been correlated with metastasis. Chin et al. (2005) suggest that 
SPARC is an independent prognostic marker in HNSCC. Differential alterations of the genes in 
the CDKN2A-CCND1-CDK4-RBpathway are associated with the development of HNSCC (Tripathi 
Bhar et al., 2003). Hypermethylation of RB1 has also been reported in HNSCC (De Carvalho et al., 
2007). We speculate that other hub genes might be potential biomarkers or play important roles in 
the development of HNSCC.

Overall, a number of critical miRNAs, TFs, and genes were identified in HNSCC through 
bioinformatic analysis of gene expression data. These findings could improve the understanding 
about the pathogenesis of HNSCC and thus benefit therapy development.
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