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ABSTRACT. We examined the protective effects of magnesium 
isoglycyrrhizinate (MgIG) on hypoxia-reoxygenation injury in rat liver cells. 
Rat liver cells in the logarithmic growth phase were divided into the hypoxia-
reoxygenation injury model group and MgIG pretreatment group (0.01, 
0.1, 1, 10, 100 mg/mL). After 24-h pretreatment, we detected the effects 
of MgIG on liver cell viability using the methyl thiazolyl tetrazolium (MTT) 
assay at 6-h hypoxia and 4-h reoxygenation. After 24-h pretreatment, liver 
cells were randomly divided into the hypoxia-reoxygenation injury model 
group and low-, moderate-, and high-MgIG-concentration groups (0.1, 1, 10 
mg/mL, respectively), and hypoxia and reoxygenation were simulated for 6 
and 4 h, respectively. Cell morphology was observed by light microscopy. 
Nuclear factor-kB gene expression was analyzed by quantitative reverse 
transcription-polymerase chain reaction. MTT results showed that MgIG (0.1, 
1, 10 mg/mL) improved the A-value of anoxia-reoxygenation injury in liver 
cells (P < 0.01) compared with that of the model group. Cells did not survive 
when the MgIG concentration was 100 mg/mL. At an MgIG concentration 
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lower than 0.01 mg/mL, the A-value of the MTT group was higher than that 
of the model group (P > 0.05). Nuclear factor-kB mRNA expression (0.597 
± 0.062, 0.248 ± 0.067, 0.141 ± 0.029) in the low-, moderate-, and high-
concentration groups was lower than that in the model group (P < 0.01). 
MgIG reduced hypoxia-reoxygenation injury of liver cells, indicating that it 
improved hepatic cell activity, inhibited lipid peroxidation and inflammatory 
reactions, and decreased nuclear factor-kB mRNA expression.
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INTRODUCTION

Magnesium isoglycyrrhizinate (MgIG) is a type of glycyrrhizin and liver cell protective 
agent, which has a variety of effects, including anti-inflammatory, detoxifying, antioxidative, and 
lipid peroxidation effects. In addition, MgIG can protect the membrane of liver cells and improve the 
function of the liver (Yan et al., 2014). Previous studies have shown that MgIG has a clear protective 
effect against liver injury and is induced by a variety of chemicals, such as carbon tetrachloride, 
lipopolysaccharide, and concanavalin A (Wang and Liu, 2008; Jin et al., 2009), but the protective 
effects of hypoxic-oxygen injury have not been reported. In this study, we developed a liver-cell 
hypoxia-reoxygenation injury model, which simulated the ischemia-reperfusion injury model of the 
liver in vivo, and investigated the protective effect of and mechanism underlying the effect of MgIG 
on hypoxia-reoxygenation injury in liver cells. Our results provide a foundation and theoretical basis 
for the clinical application of hepatic ischemia reperfusion (HIRI).

MATERIAL AND METHODS

Materials

We used adult male Sprague-Dawley rats of clean grade with body masses of 200-220 
g [animal license number: SCXK (Jiangxi) 2005-0001]. The following were used in this study: 
magnesium isoglycyrrhizinate powder (Nanjing Zhengda Tianqing Pharmaceutical Co. Ltd., 
Nanjing, China), 95% N2 + 5% CO2 gas (Shenzhen Gaofa Special Type Industrial Gas Co. Ltd., 
Guangdong, China), RNASE-free water (Takara, Shiga, Japan), TRIzol (Invitrogen, Carlsbad, CA, 
USA), reverse transcriptase (RT) reaction kit (Takara), fluorescence quantitative polymerase chain 
reaction (qPCR) kit (Takara), primer synthesis kit (Beijing Genomics Institute, Beijing, China), 
malondialdehyde (MDA) test kit, superoxide dismutase (SOD) test kit, alanine aminotransferase 
(ALT/GPT) test kit (Nanjing Jiancheng Biological Engineering Institute, Nanjing, China), enzyme-
linked immunosorbent assay (ELISA) kits with precoated tumor necrosis factor (TNF)-α (Shenzhen 
Dakewe Biological Engineering Co., Ltd., Guangdong, China) or interleukin (IL)-1β.

Methods

Isolation, culture, and identification of liver cells

We used an improved 2-step method for in situ perfusion, and collagenase was primed 
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in situ until the liver became soft. The liver cells were separated and collected using DMEM (4°C), 
followed by filtration through 100- and 200-mesh stainless steel screen filters and low-speed 
centrifugation at 50 g for 3 min; this process was repeated 3 times. Cells were cultured in RPMI 
1640 containing 10% fetal bovine serum, with 1 x 103/mL liver cells in the suspension. Dynamic 
changes in cell morphology using periodic acid-Schiff glycogen staining were observed under a 
light microscope and by hematoxylin and eosin staining.

Effects of MgIG on the vitality of hypoxia-reoxygenation-injured liver cells with 
methyl thiazolyl tetrazolium (MTT) detection

Liver cells in the logarithmic growth phase were adjusted to a cell density of 4 x 104/mL 
and 200 µL of each was inoculated into the wells of 96-well plates. The liver cells were randomly 
divided into the hypoxia-reoxygenation injury model group and the MgIG pretreatment group (0, 
0.01, 0.1, 1, 10, 100 mg/mL) and pretreated for 24 h; 6 wells were used for each group and the 
hypoxia-reoxygenation injury model was prepared as described previously (Gao et al., 2004; Wang 
et al., 2009). Liver cells were cultured under hypoxic conditions in a closed container filled with 95% 
N2 and 5% CO2; the flow rate was 5 L/min. After inflation for 5 min, the measured O2 concentration 
in the container was less than 1%. Krebs-Henseleit-Hepes buffer culture solution was also used for 
culture. Next, we arranged the sealed container and cultured the cells under hypoxic conditions at 
37°C for 6 h to stimulate the hepatic ischemia state in vivo. For reoxygenation of the culture, each 
group of cells in the culture bottle was removed from the closed container, added to RPMI 1640 
containing fetal bovine serum, and cultured under aerobic conditions with 5% CO2 at 37°C for 4 h 
to stimulate the hepatic reperfusion state in vivo. After 48-h culture, we added 20 µL MTT solution 
to each well of the plate and then incubated the plate at 5% CO2, saturated humidity, and 37°C for 4 
h. The supernatant was removed and 150 µL dimethyl sulfoxide was added to each well. The plate 
was oscillated for 10 min to dissolve the purple-blue crystals and absorbance was measured at a 
wavelength of 492 nm. The absorption value (A value) for each well was compared to a standard 
value to determine the reaction activity of the cells.

Effects of MgIG on cell morphology and ALT, SOD, MDA, IL-1β, TNF-α levels in 
each group

Liver cells in the logarithmic growth phase were randomly divided into a hypoxia-
reoxygenation injury model group and low, moderate, and high concentration MgIG groups (0.1, 
1, 10 mg/mL, respectively) after 24-h pretreatment. Hypoxia and reoxygenation conditions were 
simulated for 6 and 4 h, respectively, as described above. Morphological changes were observed 
using an inverted microscope and the supernatant was collected. The ALT, SOD, MDA, IL-1β, and 
TNF-α levels were detected with the corresponding kit.

Effects of MgIG on nuclear factor (NF)-kB expression in each group, detected by 
RT-qPCR

Cell grouping and treatment were as described above. Total RNA was extracted from liver 
cells using the TRIzol kit and the concentration and purity of RNA were determined. RT and PCR were 
conducted as described by the manufacturer. Primer sequences were as follows: NF-kB upstream 
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5'-TCCGTTATGTATGTGAAGGC-3' and downstream 5'-TTTGCTGGTCCCACATAGTTGC-3' 
(amplified product, 112 bp); glyceraldehyde 3-phosphate dehydrogenase (GAPDH) upstream 
5'-CAGGGCTGCTTTTAACTCTGG-3' and downstream 5'- TGGGTGGAATCATATTGGAACA-3' 
(amplified product, 102 bp). The experiment was repeated 3 times. An amplification curve and a 
melting curve were prepared to determine the mRNA expression and Ct values of GAPDH in the 
sample. The 2-DDCt relative quantitation method was used to determine sample concentrations. DDCt 
= (average Ct value of experimental group-average Ct value of GAPDH gene) - (average Ct value 
of control group-average Ct value of GAPDH gene). We determined the difference ratio of gene 
expression in each experimental and control group.

Statistical analysis

All data were analyzed using the SPSS software 17.0 (SPSS, Inc., Chicago, IL, USA), 
and measurement data are reported as means ± standard deviation. Two samples were compared 
using the t-test, while multiple samples were compared using single-factor analysis of variance. P 
< 0.05 indicated that the difference was statistically significant.

RESULTS

Morphologic observation of hepatic cells after isolation, culture, and PAS glycogen 
staining

Freshly isolated liver cells were in a decentralized state and had a spherical or ovoid three-
dimensional shape. Liver cells were affixed to the wall after 3-4 h; they were adherent after 6 h, and 
the cells were oval and some were larger and flat. Scattered mononuclear and binuclear liver cells 
were seen. After 24 h, the liver cells were flat or had a polygonal shape, their volume increased 
significantly, and the adjacent cells started adhering to each other. After liver cells were cultured for 
48 h and subjected to PAS glycogen staining, the glycogen in intracytoplasmic liver cells stained 
purple and red and showed granular distribution (Figure 1A-D).

Figure 1. Isolation, culture, and identification of liver cells showing PAS glycogen staining. A. Liver cells isolated and 
cultured for 12 h. B. Liver cells cultured for 48 h. C. liver cells cultured for 48 h. D. PAS glycogen staining of liver cells. 

Morphological observation of the protective effects of MgIG against 
hypoxia-reoxygenation damage to liver cells

The morphology and outline of liver cells in two groups were regular and clear; most cells 
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adhered to the dish wall and a few floating cells were noted. The cell morphology was generally 
regular in the model group after 6-h hypoxia, and floating cells slightly increased before hypoxia. 
The cells had shrunken after reoxygenation for 4 h, and the morphology of most cells was round; 
most cells were floating and few cells were adherent. After 1.0 mg/mL MgIG pretreatment for 24 
h, minimal changes in morphological characteristics were observed, and after hypoxia for 6 h and 
reoxygenation for 4 h, only a few floating cells were noted (Figure 2A-F).

Figure 2. Morphological observation of the protective effects of MgIG on liver cells under hypoxia. A. B. C. Hypoxia 
reoxygenation injury model group. D. E. F. MgIG (1.0 mg/mL) pretreatment group. A. D. Pre-hypoxia and reoxygenation 
hepatocytes, respectively; B. E. Liver cells cultured under hypoxia conditions for 6 h; C. F. Liver cells cultured under 
reoxygenation conditions for 4 h.

Effects of MgIG on hypoxia-reoxygenation activity in liver cells

MgIG increased the viability of liver cells subjected to hypoxia-reoxygenation when used 
at concentrations of 0.1, 1, 10 mg/L (A values: 0.285 ± 0.017, 0.320 ± 0.008, 0.341 ± 0.019, 
respectively); in the model group (0.227 ± 0.013), the difference was statistically significant (P0.1 = 
0, P1 = 0.000, P10 = 0.000, respectively). When the concentration was lower than or equal to 0.01 
mg/mL, the A-value of the MTT group was higher than that of the model group (P > 0.05). Although 
liver cell viability after ischemia-reperfusion injury improved in 0.01 mg/mL MgIG concentration 
group (A value, 0.235 ± 0.014), the difference was not statistically significant (P = 0.330); when the 
MgIG concentration was high (100 mg/mL), the cells did not survive (Table 1).
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Effects of MgIG on ALT, IL-1β, TNF-α, SOD, and MDA levels of 
hypoxia-reoxygenation-injured liver cells 

The ALT level of the low-, moderate-, and high-concentration MgIG pretreatment groups 
were 21.27 ± 1.58, 17.03 ± 0.87, and 14.79 ± 1.54 U/L, respectively, in the supernatant culture. 
The values were all lower than those in the model group (24.65 ± 1.22 U/L), and the difference 
was statistically significant (F = 64.98, P < 0.01). The SOD level in the cells (16.99 ± 1.25, 20.22 
± 1.35, 23.76 ± 0.99 U/mL, respectively) was higher than in the model group (12.52 ± 1.80 U/mL), 
and the difference was statistically significant (F = 72.35, P < 0.01). The MDA level (9.84 ± 1.14, 
5.64 ± 0.87, 3.93 ± 0.59 µM, respectively) was lower in the model group (11.89 ± 0.82 µM), and the 
difference was statistically significant (F = 105.19, P < 0.01). The IL-1β (33.34 ± 1.30, 30.51 ± 0.76, 
28.35 ± 1.24 pg/mL) and TNF-α (58.75 ± 4.05, 40.04 ± 4.74, 29.22 ± 2.31 pg/mL) levels were lower 
than those in the model group (37.07 ± 1.18 and 66.43 ± 3.28 pg/mL, respectively). The difference 
was statistically significant (F = 65.34, 126.44, P < 0.01) (Table 2).

Groups	 N	 A492 value

Model (0 mg/mL MgIG)	 6	 0.227 ± 0.013
0.01 mg/mL MgIG	 6	    0.235 ± 0.014M

0.1 mg/mL MgIG	 6	    0.285 ± 0.017N

1.0 mg/mL MgIG	 6	    0.320 ± 0.008N

10 mg/mL MgIG	 6	    0.341 ± 0.019N

100 mg/mL MgIG	 6	 After reperfusion, no living cells were seen under a microscope
F value		  68.06
P		  <0.01

Compared with the model group, MP > 0.05, NP < 0.01.

Table 1. Effect of different concentrations of MgIG on the activity of HL-7702 liver cells (means ± SD) subjected to 
ischemia reperfusion injury.

Effects of MgIG on NF-kB mRNA expression in hypoxia-reoxygenation-injured 
liver cells

RT-qPCR was used to construct amplification curves for NF-κB and GAPDH mRNA in 
all samples. Dissolution curves were unimodal, while the amplification curves were S-shaped, 
indicating that the primers were specific and that amplification was quite efficient. NF-κB mRNA 
expression in the low-, moderate-, and high-concentration MgIG pretreatment groups was 0.597 
± 0.062, 0.248 ± 0.067, and 0.141 ± 0.029, respectively. The values were lower than that in the 
hypoxia-reoxygenation injury model group (0.962 ± 0.034), and the difference was statistically 
significant (F = 160.327, P < 0.01) (Figure 3A-D).

Group	 ALT (U/L)	 SOD (U/mL)	 MDA (µM)	 IL-β (pg/mL)	 TNF-α (pg/mL)

Model	 24.65 ± 1.22	 12.52 ± 1.80	  11.89 ± 0.82	 37.07 ± 1.18	 66.43 ± 3.28
Lower	  21.27 ± 1.58a	   16.99 ± 1.25a	       9.84 ± 1.14a	   33.34 ± 1.30a	   58.75 ± 4.05a

Moderate	  17.03 ± 0.87a	   20.22 ± 1.35a	       5.64 ± 0.87a	   30.51 ± 0.76a	   40.04 ± 4.74a

Higher	  14.79 ± 1.54a	   23.76 ± 0.99a	       3.93 ± 0.59a	   28.35 ± 1.24a	   29.22 ± 2.31a

F value	 64.98	 72.35	 105.19	 65.34	 126.44
P	 <0.01	 <0.01	   <0.01	 <0.01	   <0.01

Table 2. ALT, IL-1β, TNF-α, intracellular SOD, and MDA levels in the culture supernatant of liver cells (N = 6).

aCompared to the model group, P < 0.01.
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DISCUSSION

MgIG is a 4th-generation glycyrrhizic acid agent extracted from glycyrrhiza plants by 
alkali isomerization catalysis and using refined salt. Its effective component is a single 18α isomer 
of glycyrrhizic acid according to Gao et al. (2004). MgIG strongly targets the liver and shows 
good lipophilicity. It combines easily with receptor proteins and the target cell receptor of steroid 
hormones in vivo, and thus acts as a hormone. MgIG also has anti-inflammatory, antioxidant, 
and lipid peroxidation effects and protects the membrane of liver cells to improve liver function. 
Previous studies showed that MgIG protects liver cells in vitro (Wang and Liu, 2008; Jin et al., 2009; 
Yan et al., 2014). Recent studies found that MgIG can significantly reduce inflammation and liver 
cell apoptosis induced in HIRI rats (Wang and Liu, 2008; Jin et al., 2009; Hua et al., 2010; Yan et 
al., 2014). Therefore, MgIG can improve liver function. However, the protective effect of MgIG on 
liver cells in an in vitro simulated ischemia reperfusion injury (anoxia/reoxygenation injuries) model 
has not been reported.

In this study, we established a model of liver hypoxia-reoxygenation injury after separation 
and culture of rat liver cells. The results showed that pretreatment with 0.1-10 mg/mL MgIG 
improved the vigor of liver cells subjected to hypoxia-reoxygenation and protected against hypoxia-
reoxygenation injury. Morphological observation also showed that MgIG maintained the normal 
liver cell morphology and reduced the death of liver cells.

Under hypoxia-reoxygenation injury conditions, liver cells can release a large number 
of oxygen free radicals and induce lipid peroxidation, resulting in cell membrane damage and 
exacerbating cell injury. MDA is the end-product of lipid peroxidation and can indirectly reflect the 
extent of cell injury. While SOD is a superoxide anion free radical scavenger, which inhibits lipid 

Figure 3. Effects of MgIG on NF-κB mRNA expression in hypoxia reoxygenation injury liver cells. A. B. Dissolution 
curve and amplification curve of NF-κB, respectively. C. D. Dissolution curve and amplification curve of GAPDH, 
respectively.
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peroxidation in the body, its levels indirectly reflect the ability of the organism to scavenge oxygen 
free radicals. Licorice compounds are potent antioxidants (Cheng et al., 2009), and studies have 
showed that MgIG can significantly improve rat liver SOD levels and decrease MDA levels in the 
case of ischemia-reperfusion, thereby reducing the degree of damage to liver cells and improving 
liver function (He et al., 2010). We showed that MgIG increased the SOD level in liver cells 
subjected to hypoxia-reoxygenation, thus reducing the damage caused by oxygen free radicals 
to liver cells and reducing MDA levels, thereby effectively protecting the liver cells from hypoxia-
reoxygenation injury.

HIRI is an aseptic inflammatory reaction process involving many inflammatory cells and 
inflammatory factors (Inoue et al., 2013). NF-kB is one of the most important transcription factors 
in the cell, and can regulate the transcription of a variety of inflammatory factors and adhesion 
molecules that participate in HIRI; for example, it regulates the transcription and expression of the 
TNF-α and IL-1β genes. These inflammatory factors initiate the inflammation process, causing liver 
cell injury both individually and synergistically. Wang et al. (2011) found that MgIG can block the 
generation of inflammatory pathways downstream of relevant inflammatory mediators by decreasing 
the starting level of the inflammatory response signal. MgIG can inhibit the inflammatory response 
reaction caused by various factors. In this study, MgIG downregulated NF-kB mRNA expression 
in cells subjected to hypoxia-reoxygenation and also reduced TNF-α and IL-1β levels in hypoxia-
reoxygenation injury liver cells.

We simulated HIRI in cells and confirmed that a certain concentration of MgIG can reduce 
HIRI in several ways. MgIG may increase the proliferation activity of liver cells and confer anti-
inflammatory, antioxidant, lipid peroxidation, and antiapoptotic effects. However, additional studies 
should be conducted to investigate the effects of MgIG on liver cell apoptosis.
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