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ABSTRACT. Copy number variations (CNVs) are an important source of 
genomic structural variation, and can be used as markers to investigate 
phenotypic and economic traits. CNVs also have functional effects on 
gene expression and can contribute to disease susceptibility in mammals. 
Currently, single nucleotide polymorphism genotyping arrays (SNP chips) 
are the technology of choice for identifying CNV variations. Microarray 
technologies have recently been used to study the bovine genome. The 
objective of the present study was to develop CNVs in Holstein cows from 
the Northwest of Mexico using the Affymetrix Axiom Genome-Wide BOS 
1 Array, which assays 648,315 SNPs and provides a wide coverage for 
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genome-wide studies. We applied the two most widely used algorithms 
for the discovery of CNVs (PennCNV and QuantiSNP) and found 56 CNV 
regions (CNVRs) representing 0.33% of the bovine genome (8.46 Mb). 
These CNVRs ranged from 1.5 to 970.8 kb with an average length of 151 
kb. They involved 103 genes and showed a 28% overlap with CNVRs 
already reported. Of the 56 CNVRs found, 20 were novel. In this study we 
present the first genomic analysis of CNVs in Mexican cattle using high-
density SNP data. Our results provide a new reference basis for future 
genomic variation and association studies between CNVs and phenotypes, 
especially in Mexican cattle.

Key words: Bos taurus Holstein cattle; Copy number variation; SNP; 
Axiom Genome-Wide BOS 1 Array; PennCNV; QuantiSNP

INTRODUCTION

Genetic variations in mammalian genomes have different forms ranging from single 
nucleotide changes to large genomic regions. One of the most important differences is copy 
number variation (CNV), which is formally defined as a genomic alteration involving DNA segments 
≥1 kb, and may correspond to deletions, duplications, insertions, inversions, or translocations 
(Conrad and Hurles, 2007). CNVs can involve large regions of DNA and they have been found 
to cover between 12-15% of the human genome (Conrad et al., 2010). CNVs can be associated 
with changes in gene structure, alteration of gene regulation, and exposure of recessive alleles 
among other effects (Bovine Genome Sequencing and Analysis Consortium et al., 2009; Zhang 
et al., 2009). Phenotypic variations caused by CNVs are the subject of study in many domestic 
animals, such as cows (Fadista et al., 2010; Liu et al., 2010; Seroussi et al., 2010; Hou et al., 2011, 
2012a,b; Jiang et al., 2012, 2013; Cicconardi et al., 2013), horses (Doan et al., 2012), pigs (Wang 
et al., 2012, 2013), sheep (Liu et al., 2013), chickens (Crooijmans et al., 2013), rabbits (Fontanesi 
et al., 2012), and dogs (Alvarez and Akey, 2012). There are several methods to identify CNVs 
genome-wide: comparative genomic hybridization arrays (aCGH); single nucleotide polymorphism 
(SNP) genotyping arrays; and high-throughput (next-generation) sequencing (Wang et al., 2013). 
SNP genotyping arrays are the most widely used because of their advantages of simultaneously 
measuring total signal intensity (Log R ratio, LRR) and allelic intensity ratio (B allele frequency, 
BAF), and of identifying the number of DNA copies and copy neutral loss of heterozygosity (LOH) 
(Peiffer et al., 2006). In the case of the cattle community, research has focused mainly on the use 
of SNPs for genome-wide variation studies, resulting in the SNP genotyping arrays becoming the 
main research tool for genetic variation in cattle (Hou et al., 2011). One of the highest density 
commercially available genotyping arrays for cattle is the Axiom Genome-Wide BOS 1 (Affymetrix, 
Inc., USA), which assays 648,315 informative SNPs across the whole bovine genome. In this 
study, we performed CNV detection using data from this array.

Initially in CNV detection studies, researchers used a single algorithm for the detection; 
recently, however, it has become common practice to use two or three algorithms in order to 
minimize detection of false positives, by assuring that they match, confirm the same location, or 
overlap a known CNV (Sanders et al., 2011; Jiang et al., 2012; Cicconardi et al., 2013; Zhao et al., 
2013). Currently, several commercial and public algorithms are available for detecting CNVs; the 
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most widely used are PennCNV (Wang et al., 2007) and QuantiSNP (Colella et al., 2007). Both 
algorithms infer CNVs from the SNP intensity LRR and BAF, implementing a hidden Markov model 
(HMM). QuantiSNP implements an Objective Bayes framework. It uses a resampling method to 
set some hyper-parameters in the priors, and applies the maximum marginal likelihood method to 
the training data to set other parameters. In contrast, PennCNV writes the emission probabilities of 
LRR and BAF into the same likelihood function, and estimates the model parameters by maximizing 
the likelihood of observing the training data. Subsequently, parameters in transition and emission 
probabilities are fixed in the HMM when analyzing different data (Xu et al., 2011).

Currently, there are no reports on genome-wide structural variations in livestock in Mexico. 
Obtaining this information will be very important for future research in Mexican cattle improvement. 
The objective of this study was to develop CNVs in Holstein cows from the Northwest of Mexico 
using high-density genotyping arrays, and to compare the results with previously reported CNVs 
from cattle in other countries. We hypothesized that due to the environmental conditions in the 
geographic region in which the cows live, they might be characterized by unique CNVs. Therefore, 
this study will provide a new basis for reference for future genomic variation and association studies 
between CNVs and phenotypes in Mexican cattle.

MATERIAL AND METHODS

Ethics statement

The Autonomous University of Baja California (UABC) animal care and use committee 
deemed that it was unnecessary to obtain ethical clearance for the study as all blood samples 
used for DNA extraction were collected under the directives on animal research of the Institute for 
Research in Veterinary Science UABC (IICV-UABC) abiding by Mexican laws on animal studies 
(NOM-003-ZOO-1994 and NOM-062-ZOO-1999).

Location of the study

This study was performed at the dairy farm belonging to the Veterinary Science Research 
Institute of the UABC, located 3.5 km along the San Felipe road from Mexicali, Baja California, at 
32°24'27''N and 115°23'03''W. The altitude of the farm is 8 m, and a desert-like temperature with an 
annual average temperature of 22°C prevails (http://www.inegi.org.mx).

Characteristics of the cows

The samples were obtained from 12 Holstein dairy cows, registered in the Mexican 
Holstein Association. All were born after artificial insemination, and were between their first and 
fourth lactation; they were all clinically healthy and free of brucellosis and tuberculosis. The sampled 
animals were not related in the last three generations.

DNA extraction and genotyping

The blood samples were collected on January 2014 by venipuncture of the coccygeal vein 
using vacutainer tubes (Vacutainer, Hemogar, USA) with EDTA anticoagulant.

DNA extraction and purification was performed using a QIAGEN kit (QIAamp DNA 
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Blood, QIAGEN, Germany). All DNA samples were analyzed by spectroscopy and agarosegel 
electrophoresis, and were genotyped with the Axiom Genome-Wide BOS 1 Array with an average 
call rate for each individual sample of 99.7%. The rawdata of the SNP chip were submitted to the 
Gene Expression Omnibus (Feb 10, 2014) under accession No. GSE54813 (http://www.ncbi.nlm.
nih.gov/geo).

Identification of cattle CNVs

In order to increase the level of reliability for CNV detection and to decrease the rate 
of false positives we applied two of the most accurate algorithms for CNV prediction: PennCNV 
(Wang et al., 2007) and QuantiSNP (Colella et al., 2007). The PennCNV algorithm requires 
an input of signal intensity (normalized by the LRR), BAF for each marker, and the distance 
between each SNP (base-pair positions). LRR and BAF were obtained using the guideline 
established in PennCNV-Affy Protocol for CNV detection in Affymetrix SNP arrays (http://www.
openbioinformatics.org/penncnv/penncnv_tutorial_affy_gw6.html) and using Affymetrix Power 
Tools (APT) (http://www.affymetrix.com/estore/partners_programs/programs/developer/tools/
powertools.affx). PennCNV includes an argument called GCmodel, which uses a regression 
model for adjusting the high GC content and recovers samples affected by ‘‘genomic waves” 
(Diskin et al., 2008). The GC model file for this study was generated by a Perlscript, which 
computes the GC content within 1 Mb around each marker (500 kb each side), and genomic 
waves were adjusted using -gcmodel option. PennCNV was executed using the -test option, 
considering that there was no relationship between the samples and pedigree/trio information 
was not included. It was applied only to the 29 autosomal chromosomes with -lastchr29 option, 
using default values ​​(standard deviation LRR of 0.30, BAF drift 0.01, and a waviness factor of 
0.05). QuantiSNP was executed with the options -isaffy and -levels enabled since we used an 
Affymetrix array. In the same way -gcdir option was enabled to perform the correction of the 
LRR, in markers affected by genomic waves. For declaring a putative CNV, we considered at 
least three adjacent SNPs indicating a loss or gain, with a total length greater or equal to 1 kb, 
detected simultaneously by the two algorithms in the same animal, either in the same position or 
overlapping. Finally, CNV regions (CNVRs) were defined based on the criteria used in a study 
by Redon et al. (2006).

CNV validation by real-time PCR (qPCR)

In order to confirm the accuracy of our prediction of CNVs, we used qPCR to validate seven 
CNVRs selected from the 56 detected in this study. From the selected CNVRs, three were single 
copy duplication (CNVRs 1, 16 and 35), two were deletions of one copy (CNVRs 2 and 11), and 
two were double copy duplications (CNVR21 and 55). For each target CNVR, two pairs of primers 
were designed considering the limits of each CNVR. PCR primers were designed using the NCBI 
Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome). 
All primers were designed based on the reference sequence Bos taurus UMD3.1 at NCBI.

Reactions were performed intriplicate in a volume of 20 µL in a Light Cycler CFXConnect, 
(Roche, Switzerland) using the following reagents: 10 µL iTaq Universal SYBR Green supermix 
(BIO-RAD, USA), 1 µL DNA (about 50 ng), 1 µL 20 pM/µL for both primers (forward and reverse), 
10 µL 2x Master Mix, and water. The PCR amplification program was 5 min at 95°C, followed by 
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40 cycles at 95°C for 10 s and 60°C for 10 s. Primer efficiency was tested for each primer pair on 
three points of dissolution.

We used the Basic Transcription Factor (BTF3) as a control gene for comparing the number 
of copies in each CNVR (Jiang et al., 2012; Cicconardi et al., 2013). The method of comparative 
cycle threshold (2-ΔΔCt) was used to quantify the number of changes of the copies by comparing 
the ΔCt value [cycle threshold (Ct) of the region of the target minus the region Ct control] from the 
samples with CNV to a ΔCt of a calibrator without CNV (Livak and Schmittgen, 2001; D’Haene et 
al., 2010; Jiang et al., 2012).

The average Ct value of three replicates for each sample was calculated, normalized, 
and compared against the control gene, with the assumption of the existence of two copies of the 
DNA segment in the control region. For each CNVR to be validated, the value of 2 x 2-ΔΔCt was 
calculated for each individual (Jiang et al., 2013). The obtained value was used to decide if a CNVR 
was normal (without CNVR, if the value was about two), or a gain (if the value was about three or 
above), or a deletion (if the value was near zero or one) (Jiang et al., 2012). See Table 1 for the 
results of testing the qPCRs.

CNVR No.	 Chr	 Start	 End	 Type	 Average normalized value	 Value expected	 Validated by PCR

  1	   1	   1,971,535	   2,003,454	 Gain	 2.7	 3	 Yes
  2	   1	 34,613,754	 34,617,353	 Loss	 1.2	 1	 Yes
11	   4	 33,547,395	 33,556,611	 Loss	 1.7	 1	 No
16	   7	 97,442,762	 97,444,260	 Gain	 3.1	 3	 Yes
21	 11	 39,886,500	 39,918,145	 Gain	 2.2	 3	 No
35	 14	 22,348,562	 22,393,497	 Gain	 2.7	 3	 Yes
55	 28	 22,706,652	 22,725,331	 Gain	 4.2	 4	 Yes

Table 1. Quantitative real-time PCR analysis of the seven selected CNVRs.

Average normalized values of approximately one indicate a single copy loss; values around three indicate a three-copy 
gain, and around four indicate a four copies gain.

RESULTS AND DISCUSSION

Genome-wide detection of CNVs

In this study, we analyzed genotype data in 12 Mexican Holstein cows using an array with 
648,315 SNPs, and applied PennCNV and QuantiSNP algorithms for CNV detection. PennCNV 
detected 155 CNVs, while QuantiSNP detected 302. The algorithms coincided for 77 CNVs, 
detected in the same position and the same sample (Figure 1). Initially, we termed these variants 
as putative CNVs. The 77 putative CNVs were localized across 22 autosomal chromosomes in 
the 12 samples. The average number of CNVs per sample was 6.41 and the average number of 
CNVs per chromosome was 3.5. We inspected the 77 CNVs for overlaps and defined 56 CNVRs, 
covering 0.33% (8.46 Mb) of the bovine genome (see Table S1). The CNVRs lengths ranged from 
1.5 to 970.81 kb with an average size of 151.11 kb and a median of 51.6 kb. Figure 2 shows the 
distribution of CNVR sizes; the most abundant size range was from 10 to 50 kb (see Table 2 for the 
statistics of the CNVRs).

Among the CNVRs were 24 loss, 30 gains, and 2 loss-gain types of variation; the CVNRs 

http://www.geneticsmr.com/year2015/vol14-4/pdf/gmr6624_supplementary.pdf
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were not evenly distributed across the genome. Among chromosomes, the proportion chromosome 
length covered by CNVRs ranged from 0.03 to 3.8%; chromosome 12 had the highest proportion 
(3.8%) and chromosome 2 the lowest proportion (0.03%). The largest CNVR loss was 0.30 Mb on 
chromosome 15 of cow number three, while the largest CNVR gain was 0.97 Mb on chromosome 
12 of cow number one. The chromosome with the largest number of CNVRs was chromosome 12, 
which had eight, while chromosomes 9, 21, 23, 25, 28, and 29 all had only one CNVR. From the 
56 CNVRs, 20 were novel CNV regions (not reported in previous studies), representing 35.71% of 
all detected CNVRs. From these novel CNVRs, 10 were losses and 10 were gains. Figure 3 shows 
two examples of LRR and BAF values, corresponding to 2 loss type CNVs (deletions).

Figure 1. CNVs in autosomal chromosomes detected by PennCNV and QuantiSNP algorithms. The first inner circle 
(red lines) represents the 302 CNVs found by QuantiSNP. The second inner circle (blue lines) represents the 155 CNVs 
found by PennCNV. The third inner circle (black lines) represents the 77 CNVs in which both algorithms coincided.
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Figure 2. Size distribution of the detected CNVRs. The most frequent size category was 10-15 kb, while the least 
abundant were those larger than 500 kb.

Type	 CNVRs	 Mean size	 Median size	 Size range	 CNVR content	 Sequence covered	 % CNVR

Loss	 25	   71,458	   37,694	        343-302,434	 1,789,724		  0.071
Gain	 29	 207,314	   59,268	     1,498-970,815	 6,012,125	 2,512,082,506	 0.239
Both	   2	 330,377	 330,377	 245,291-415,064	   660,355		  0.026
All	 56	 151,052	   51,593	        343-970,815	 8,462,204		  0.337

Table 2. Characteristics and sizes (bp) of the CNV regions.

Gene content and functional analysis

We used the BioMart database (http://www.biomart.org, accessed May, 2014) to identify 
gene contents within the regions covered by CNVRs, and also used the RefGen database (http://
refgene.com) to obtain a description of each gene affected. The CNVRs covered 103 genes, of 
which 96 encoded proteins, two were pseudogenes, three were snRNAs, and two were miRNAs. 
The genes were present within 37 CNVRs (66%); we could not find any gene annotations in the 
remaining 19 CNVRs (34%).

In order to analyze functional enrichment in the CNVRs, we searched the Gene Ontology 
(GO) database (Ashburner et al., 2000) and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database (Kanehisa et al., 2010). Both analyses were carried out using the bioinformatic 
tool DAVID (Huang et al., 2009). The GO analysis showed common gene terms among mammals, 
e.g., the sensory perception, cognition, olfactory receptor, neurological system process, G-protein 
coupled receptor protein signaling pathway, and cell surface receptor linked signal transduction. 
KEGG pathway analysis showed that the genes were mainly represented in the pathway of 
olfactory transduction (see Table S2).

http://www.geneticsmr.com/year2015/vol14-4/pdf/gmr6624_supplementary.pdf


11855Copy number variations in Mexican Holstein

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (4): 11848-11859 (2015)

Figure 3. Log R ratio (LRR) and B allele frequency (BAF) plots of two copy number variation regions (CNVRs).
The combination of BAF and LRR plots are used to generate CNV calls. Each pair of plots is for a different sample-
chromosome combination and each point is a SNP. Points inside a CNVR are drawn in red, and outside are drawn in 
blue. The vertical dotted lines indicate the limit of the region. A. Low values of LRR (less than -1) and grouping of BAF 
values around 0.5 indicates a deletion of two copies in a region of chromosome 15. B. Some low values (below -1) in 
LRR and no values in the 0.5 cluster indicate a single copy deletion in a region of chromosome 11.

A

B
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We compared the CNVRs identified in this study with QTLs from the bovine QTLdb (Hu et 
al., 2013) (http://www.animalgenome.org/cgi-bin/QTLdb/BT/index, accessed Sep. 2014) and found 34 
overlaps. These QTLs are associated with a wide range of traits including body length, milk protein, 
milk fat, height, meat color, and some disease susceptibility traits, such as dystocia and clinical mastitis.

Finally, in order to confirm the accuracy of our predicted CNVRs, we selected seven of 
the 56 CNVRs and validated them using qPCR. Three of the seven CNVRs were single copy 
duplications (CNVRs 1, 16 and 35), two were deletions of one copy (CNVRs 2 and 11), and two 
were double copy duplications (CNVRs 21 and 55). For each target CNVR, two pairs of primers 
were designed, considering the limits of each CNVR. PCR primers were designed using the NCBI 
Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome). 
All primers were designed based on the reference sequence (B. taurus UMD3.1) from NCBI. We 
confirmed five CNVRs from the seven selected using the method of comparative cycle threshold 
(2-ΔΔCt) to quantify the number of changes of the copies by comparing ΔCt values.

Analyzing overlapping CNVs from the algorithms, we found 49.67% overlap of PennCNV 
with QuantiSNP, but only 25.49% overlap for the reciprocal comparison. Next, we compared our 
results with reported CNVs detected with different technologies such as comparative genomic 
hybridization (aCGH) array (Fadista et al., 2010; Liu et al., 2010), next generation sequencing 
(Bickhart et al., 2012), and SNP Beadchip 54 kb (Hou et al., 2011, 2012b; Cicconardi et al., 
2013) and high density SNP (777 kb) assay (Hou et al., 2012a; Jiang et al., 2013). Since the last 
studies used the Btau4.0 bovine genome assembly (all the rest including our study used UMD3.1 
assembly), we translated their data to the UMD3.1 assembly using the UCSC liftOver tool (Rhead 
et al., 2010) and the NCBI genome remapping service (http://www.ncbi.nlm.nih.gov/genome/
tools/remap, accessed Sep, 2014) and finally, to be consistent, we compared only CNVRs from 
autosomal chromosomes.

For aCGH-based studies, our detected CVNRs overlap with those reported by Fadista 
et al. (2010) by 16.07% (9 CNVRs) with a total overlap length of 1.83 Mb (21.63%). For those 
reported by Liu et al. (2010) the overlap was 25% (14 CNVRs) with a total overlap length of 3.93 
Mb (46.45%). Bickhart et al. (2012) used next-generation sequencing to identify CNVs; our data 
here showed an overlap of 19.64% (11CNVRs) with a total overlap length of 2.82 Mb (33.33%) 
compared to the published data. Hou et al. (2011) reported an analysis based on SNP Beadchip 
54 kb, and their data showed an overlap of 26.78% (15 CNVRs) with a total overlap length of 3.99 
Mb (47.16%) compared to the present study. However, in a later study (Hou et al., 2012b), the 
overlap was 19.64% (11 CNVRs) with a total overlap length of 2.37 Mb (28.01%), while the data 
of Jiang et al. (2012) indicate an overlap of 3.19% (3 CNVRs) with a total overlap length of 0.66 
Mb (7.80%), and those of Cicconardi et al. (2013) indicate an overlap of 26.78% (11 CNVRs) with 
a total overlap length of 1.20 Mb (14.18%). The data from high density SNP assays (777 kb) (Hou 
et al., 2012a) showed a 75% overlap (42 CNVRs) representing 7.59 Mb (89.72%) with our data. 
The data reported by Jiang et al. (2013) showed an overlap of 41.07% (23 CNVRs) representing 
an overlap length of 1.31 Mb (15.48%). Table 3 presents the results of the comparison between 
CNVRs detected in this study and those found in other studies.

The comparison of our results with other studies showed notable differences, mainly due 
to the use of different algorithms, different technology platforms, and different criteria in parameter 
adjustment. An additional factor that might contribute to the differences was the geographic region 
in which the animals lived. Sample sizes did not appear to influence the results since Jiang et al. 
(2012) and Cicconardi et al. (2013) used 2047 and 2654 animals, respectively; our data showed 
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matches of 3.19 and 26.78%, respectively. Hou et al. (2011) used 521 animals and their data 
showed 26.78% overlaps with those here; Fadista et al. (2010) sampled only 20 animals with 
aCGH technology and their data showed 16.07% overlaps with those here. Bickhart et al. (2012) 
used next-generation sequencing on a sample of six animals and their data showed 19.64% 
overlaping CNVs with those here. The largest number of overlaps between our results and those 
reported previously came with studies using high-density SNP genotyping technologies: 75% with 
Hu et al. (2013) and 41.07% with Jiang et al. (2013). One reasons for this is that high-density SNPs 
can detect smaller CNVs than is possible with lower density SNPs (Hou et al., 2011, 2012a; Jiang 
et al., 2012, 2013): by comparison, the 54k SNP density analysis yielded 682 and 94 CNVs in two 
studies, whereas use of 777k SNP density analysis yielded 3346 and 358 CNVs, respectively.

Study	 Methods	 Algorithm used		            Other studies				  CNVR overlaps with those identified here

			   Samples	 Number of	 CNVR	 Length	 Count	 Pecentage	 Total length	 Percentage
				    breeds		  (Mb)		  of count (%)	 (Mb)	 of length (%)

Fadista et al. (2010)	 aCGH	 seg-MNT	     20	   4	   233	   14.25	   9	 16.07	 1.83	 21.63
Liu et al. (2010)	 aCGH	 GIM; SW-ARRAY	     90	 17	   142	   35.83	 14	 25.00	 3.93	 46.45
Hou et al. (2011)	 SNP chip (54 kb)	 PennCNV	   521	 21	   672	 152.68	 15	 26.78	 3.99	 47.16
Bickhart et al. (2012)	 Next-generation Seq	 mrFAST	       6	   3	   978	   52.30	 11	 19.64	 2.82	 33.33
Hou et al. (2012a)	 SNP chip (777 kb)	 PennCNV	   674	 27	 3438	 146.90	 42	 75.00	 7.59	 89.72
Hou et al. (2012b)	 SNP chip (54 kb)	 PennCNV	   472	   1	   462	   86.05	 11	 19.64	 2.37	 28.01
Jiang et al. (2012)	 SNP chip (54 kb)	 PennCNV; cnvPartition; 	 2047	   1	     94	   21.30	   3	   3.19	 0.66	   7.80
		  GADA
Cicconardiet al. (2013)	 SNP chip (54 kb)	 PennCNV; QuantiSNP	 2654	   5	   394	 515.90	 11	 26.78	 1.20	 14.18
										        
Jiang et al. (2013)	 SNP chip (777 kb)	 PennCNV	     96	   1	   358	   34.45	 23	 41.07	 1.31	 15.48
This study	 SNP chip (648 kb)	 PennCNV; QuantiSNP	     12	   1	     56	     8.46

Table 3. Comparison between CNVRs detected in this study and those of other studies.

The GC content within each CNVR varied from 33.9 to 57.95%, in agreement with the 
proposal that CNVs are regions of high GC content (Fadista et al., 2010). CNVs are also associated 
with segmental duplications (SDs), which are defined as DNA sequences with lengths ≥1 kb with at 
least 90% sequence identity. Comparing our results with previously reported SDs (Liu et al., 2009) 
identified 12.5% overlaps.

CONCLUSIONS

In a genome-wide CNV study of 12 Holstein cows from the Northwest of Mexico, we 
identified 56 CNVRs distributed across the 29 autosomal chromosomes; 20 of these CNVRs were 
novel. Validation of seven of the putative CNVRs by qPCR showed that five were indeed CNVRs. 
High-density data permitted us to achieve greater accuracy in the identification of CNVRs and 
their candidate genes. Our study provides a new basis of reference for future investigations of the 
associations between CNVs and phenotypes, especially in Mexican cattle.
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