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ABSTRACT. Fast prediction of protein function is essential for high-
throughput sequencing analysis. Bioinformatic resources provide cheaper 
and faster techniques for function prediction and have helped to accelerate 
the process of protein sequence characterization. In this study, we 
assessed protein function prediction programs that accept amino acid 
sequences as input. We analyzed the classification, equality, and similarity 
between programs, and, additionally, compared program performance. 
The following programs were selected for our assessment: Blast2GO, 
InterProScan, PANTHER, Pfam, and ScanProsite. This selection was 
based on the high number of citations (over 500), fully automatic analysis, 
and the possibility of returning a single best classification per sequence. We 
tested these programs using 12 gold standard datasets from four different 
sources. The gold standard classification of the databases was based on 
expert analysis, the Protein Data Bank, or the Structure-Function Linkage 
Database. We found that the miss rate among the programs is globally 
over 50%. Furthermore, we observed little overlap in the correct predictions 
from each program. Therefore, a combination of multiple types of sources 
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and methods, including experimental data, protein-protein interaction, and 
data mining, may be the best way to generate more reliable predictions and 
decrease the miss rate.
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INTRODUCTION

Many protein sequences are already known and are available in public databases 
(Godzik et al., 2007; Chitale and Kihara, 2011), but the newly discovered sequences require 
fast and reliable functional annotation to increase data utility in subsequent searches (Godzik 
et al., 2007; Gerlt et al., 2012). Experimental characterization is still the most reliable way 
to define the function associated with a protein sequence, but it is a slow, expensive, and 
time-consuming process to perform for newly discovered sequences. On the other hand, 
bioinformatics resources are cheaper and faster techniques for function prediction and they 
have helped accelerate the process of protein sequence characterization (Godzik et al., 2007; 
Rentzsch and Orengo, 2009; Blaby-Haas and de Crécy-Lagard, 2011). About 100 computational 
resources are available for protein function prediction and most of them use sequences as 
input (Godzik et al., 2007). However, the success of these prediction programs needs to be 
assessed and some approaches are available, such as the Critical Assessment of Protein 
Structure Predictions (CASP) and the Critical Assessment of Protein Function Annotation 
(CAFA). These approaches measure only the hit level using metrics for Gene Ontology (GO) 
(The Gene Ontology Consortium, 2013) term similarity and do not use multivariate analysis; 
thus, they evaluate each prediction program individually and with a single dataset at a time 
(Soro and Tramontano, 2005; Conesa and Götz, 2008; Rentzsch and Orengo, 2009; Chitale 
and Kihara, 2011; Thomas, 2011; Radivojac et al., 2013).

In the present study, we show a new approach to assess protein function prediction 
programs. We carried out qualitative and quantitative analyses of these programs to determine 
which program is best suited to perform protein function prediction. We considered the evaluation 
of the amount of correctly predicted sequences, run time, differences in results, and characteristics 
of each program. Furthermore, we developed General Linear Models (GLMs) for total-of-hits 
analysis, which allowed the simultaneous comparison between different programs and different 
test datasets. Therefore, we assessed five distinct programs and 12 distinct test datasets.

The five programs assessed were Blast2GO (Conesa and Götz, 2008), InterProScan 
(Mulder et al., 2007), PANTHER (Thomas, 2011), Pfam (Genome Research Ltd., 2010), and 
ScanProsite (De Castro et al., 2006). These programs were selected based on a high citation rate 
(over 500 citations each) in the literature (Thomas et al., 2003b; Conesa et al., 2005; Hunter et al., 
2009; Sigrist et al., 2010; Punta et al., 2012), recent last release date (no more than 3 years ago), 
fully automatic analysis, and the possibility of returning a single best classification per sequence.

The results show that the predictions only from sequence data have a high miss raterate 
of error. Therefore, the development of new techniques for protein function prediction using only 
sequence data are required and predictions with more data, other than just sequence, may be 
more reliable.
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MATERIAL AND METHODS

Test datasets

We used 12 test datasets from four different resources (Dobson and Doig, 2003; Pegg 
et al., 2006; Brown et al., 2006; Brown et al., 2007). Their authors described the sequences 
as well-characterized and well-known. They are considered as the gold standard according to 
expert analysis, Protein Data Bank (PDB) (Berman et al., 2000), and Structure-Function Linkage 
Database (SFLD) nomenclatures. We consider these classifications as standard for comparison 
and the dataset characteristics and sources are presented in Table 1. The sequences classified by 
experts were: aminergic G protein coupled receptor (Aminergic GPCR), nuclear hormone receptor 
(NHR), and secretin-like (Brown et al., 2007). The Enzyme and Non-enzyme datasets came from 
PDB identifiers (PDB IDs) of reference sequences (Dobson and Doig, 2003). The bifunctional 
dataset was built from the previous dataset by Dobson and Doig (2003) using the structure title field 
and chosing the ones with the “bifunctional” term while excluding the “putative”, uncharacterized”, 
or “unknown” terms”. The enolase, crotonase, haloacid dehalogenase, vicinal oxygen chelate, and 
radical S-adenosyl methionine (Radical SAM) datasets are from superfamilies and came from the 
SFLD database (Pegg et al., 2006). We only selected sequences with known function and with at 
least one linked PDB ID. The SFLD was presented and recommended by Schnoes et al. (2009). 
Brown et al. (2006) described a dataset (we refer to it using the S set-), with many adequate 
sequences for a test of clustering and functional classification of sequences, providing the GenInfo 
Identifier (GI) of National Center for Biotechnology Information (NCBI) for each sequence (Brown 
et al., 2006).

Analysis workflow

We implemented a workflow (Figure 1) in Shell script for program execution and generation 
of results for analysis. The workflow submitted all datasets to each of the five focus programs, 
keeping track of the starting and ending times of each execution. A C++ script pre-processed 
the programs output, which standardized all outputs to a single format: sequence identifier and 
program sequence classification. An R script standardized the pre-processed output and reference 
classification, using a methodology adapted from Tsuruoka et al. (2008), and created the results 
for analysis.

Data analysis

We describe below the four parameters used to assess the protein function prediction 
programs, including input data information, accounts, and methods used.

Total of hits

We used a total match of function name character strings in this assessment. We determined 
if the classifications from each program were the same or not as the gold standard classification 
and the amount of correct predictions determined which program had the most significant number 
of hits. We developed and used GLMs (Turkman and Silva, 2000) from the “Stats” default package 
of R script (R Core Team, 2012) to analyze the count data without using non-parametric methods, 
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and tested many combinations of factors that may affect the predictions, e.g., constant factor, 
test dataset, prediction program, and factor interaction. The Akaike Information Criterion (AIC)
(Christensen, 1997; Turkman and Silva, 2000), also included in R script, was used to select the 
best model (model with the lowest index value) among the five models built.

Figure 1. Analysis of workflow. The datasets with reference classification (gold standard) were submitted manually 
to C++ specific algorithms. These algorithms standardized the data before Shell script execution (1). The Shell script 
algorithm (a) submitted the sequences to each program (2), standardized the programs output using C++ specific 
algorithms (3), and submitted the standardized reference classification (made in step 1) (b1) and standardized 
programs output (b2) to an R script algorithm (4 and 4’). The Shell script execution outputted a file with the execution 
record of Shell script execution (c), a table with all classifications (d1), a table with the amount of correct predictions 
(d2), and a Venn diagram (d3). The file with the execution record (c) was submitted manually to a C++ algorithm 
(5) that generated a table with execution time (d4), which was submitted manually to an R script algorithm for the 
performance assessment (6). The table with all classifications was manually submitted to a MATLAB algorithm for 
hit level assessment (7) and the table with the amount of correct predictions to an R script algorithm for total-of-hits 
analysis (8).

Hit level

We used an equation to compare two classification character strings, which results in a score 
for comparison between the program classification and reference classification (gold standard). 
This was done by modifying the Smith-Waterman algorithm score, which is an algorithm developed 
for sequence comparison, implemented in MATLAB (“swalign” function) (The MathWorks, 2013) to 
work on the (non-sequence) classification character strings. This modification required alterations 
in the algorithm input data: conversion of non-amino acid characters to amino acid characters (see 
section 1 of the Supplementary material), use of the identity matrix as the substitution matrix, 
and Fasta file construction within classification strings in the sequence field using the specific C++ 
algorithm. The equation includes the possible average values for two-sequence comparison and 
divides this average by the summed average of self-comparison sequence results. The equation 
result is a number between 0 and 1, with numbers close to 1 indicating that the sequences are the 
same (Equation 1). This score enables a comparison analysis for all classifications.

http://www.geneticsmr.com/year2015/vol14-4/pdf/gmr6593_supplementary.pdf
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where y is a similarity score between one program classification and one reference classification 
and x is the Smith-Waterman algorithm similarity, wherein x11 is a reference classification self-
score, x22 is a program classification self-score, x12 is a reference classification versus program 
classification score, and x21 is a program classification versus reference classification score.

Performance assessment

 We calculated analysis of variance (ANOVA) with the Tukey method (Callegari-Jacques, 
2003) to determine the best performance program from the execution time data. We used the 
total execution time per sequence and per amino acid residue. The data processing time aims to 
highlight the fastest program and is calculated from execution times (Fonseca et al., 2012).

Program characteristics

We listed the characteristics that would lead a user to choose a program, such as file size, 
program execution pre-requirements, installation, and user-friendliness (Fonseca et al., 2012).

Other informative analysis are present in other prediction program assessments (Pandey 
et al., 2006; Rentzsch and Orengo, 2009; Henry et al., 2011), such as the accuracy that arises from 
program hit data. This study includes the level hit data, besides the hit or miss data.

RESULTS

We analyzed 12 test datasets and the assessed prediction programs did not correctly 
predict any sequence from four test datasets: AminergicGPCR, NHR, Secretin-like, and Crotonase 
(Table 1). Therefore, we excluded those datasets from the total-of-hits analysis. The programs 
exhibited significant divergences of prediction for the other eight datasets. Blast2GO showed the 
largest number of hits and this represents less than 30% of the sequences dataset (see section 2 
of Supplementary material). According to the best fitted GLM of total-of-hits analysis (P < 0.05) 
(Equation 2, Figure 2) and the level hit analysis (P < 0.5; Figure 3), Blast2GO exhibited higher hit 
probability than any other assessed program, and InterProScan was the second program with the 
highest hit probability. Pfam and ScanProsite showed the lowest hit probabilities (Figure 2).

where y is the answer variable. Program, Set, and Interaction are predictive variable covariates; β 
is the estimator; and i is a positive integer representing the number of the experimental unit.

The highest similarity level possible is 1.0 and this value shows that the predicted 
nomenclature string completely matched the gold standard nomenclature string. The values 
between the highest and lowest level hits represent a ratio of the predicted nomenclature string 
that is equal to the gold standard nomenclature string (x-axis in Figure 3).

(Equation 1)

(Equation 2)

http://www.geneticsmr.com/year2015/vol14-4/pdf/gmr6593_supplementary.pdf
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Table 1. Dataset description.

Test dataset	 Number of sequences	 Number of classifications	 Number of bases

AminergicGPCR [1]	 358	   31	 104335
NHR [1]	 412	   27	   72227
Secretin-like [1]	 153	   15	   38025
Enzymes [2]	 690	 630	 226335
Non-enzymes [2]	 487	 449	   88397
Bifunctional (adapted from [2])	   60	   51	   22074
Enolase [3]	 927	   25	 357425
Crotonase [3]	 262	   18	   86773
Haloacid dehalogenase [3]	 389	   22	 263851
Vicinal oxygen chelate [3]	 145	   12	   39592
SAM [3]	 145	   19	   52027
S [4]	 863	   90	  353221

NHR: Nuclear Hormone Receptor; SAM: Radical S-adenosyl methionine; S: Brown SD’s dataset (Brown et al., 2006). 
Data source:  [1] (Brown et al., 2007) , [2] (Dobson and Doig, 2003), [3] (Pegg et al., 2006), [4] (Brown et al., 2006).

Figure 2. Total-of-hits analysis. Hit probability (y-axis) for each program (x-axis) (1) Blast2GO, (2) InterProScan, (3) 
PANTHER, (4) Pfam, and (5) ScanProsite, according to the best-fitted GLM for the test datasets: enzymes, non-
enzymes, bifunctional, enolase, haloacid dehalogenase, vicinal oxygen chelate, radical SAM, and S sets. P values 
lower than 0.05 are designated as (*), lower than 0.01 as (**), and lower than 0.001 as (***). High-standard deviations 
(over 300) related to low-hit counts are signed with (-) and related to null-hit counts are designated as (--).
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Figure 3. Hit level. Sequence percent (y-axis) for a specific hit level (x-axis) between Blast2GO (-), InterProScan 
(-), PANTHER (-), Pfam (-), and ScanProsite (-) predictions and the reference nomenclature. Note that for the 
AminergicGPCR, NHR, Secretin-like, and Crotonase sets, none of the programs reached the highest similarity level.

No sequence was predicted by all the programs simultaneously (central value in Figure 
4B); 1433 sequences were correctly predicted from a total of 4891 sequences (or 3706 sequences, 
excluding the 4 sets without any hit). Blast2GO and InterProScan had the highest number of hits, 
either by themselves or combined (Figure 4B). Blast2GO and InterProScan correctly predicted 
905 and 593 sequences, respectively, representing 19 and 12% (24 and 16% without those 4 
sets) from the total number of sequences. Both programs correctly predicted 1233 sequences, 
representing 25% (33% without those 4 sets) from the total number of sequences. The correctly 
predicted sequences of Blast2GO contained around 80% of the correctly predicted sequences 
of PANTHER and more than 45% of the correctly predicted sequences of Pfam (Figure 4B). The 
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programs that shared the lowest number of correctly predicted sequences with other programs 
were ScanProsite, followed by InterProScan (Figure 4B). There were 10 sequences that none 
of the assessed programs predicted (central value in Figure 4A), with one coming from the NHR 
dataset, three from the Enzymes dataset, and six from the Non-enzymes dataset (see section 3 
of Supplementary material). PANTHER and ScanProsite had the highest number of sequences 
without prediction: 3615 for PANTHER and 2459 for ScanProsite (Figure 4A). Both programs 
also simultaneously shared the highest number of sequences without prediction, that is, 1758 
(Figure 4A). Pfam had the lowest number of sequences without prediction, with all its non-classified 
sequences being shared with all other programs (Figure 4A).

The execution times of the programs were significantly divergent (P < 0.01). PANTHER, 
Pfam, and ScanProsite had execution times lower than Blast2GO and InterProScan (Figure 5).

InterProScan, PANTHER, Pfam, and ScanProsite exhibited the easiest and fastest 
installations, and were more intuitive than Blast2GO in terms of command line use. The local 
Blast2GO installation requires database knowledge for the GO database installation. Blast2GO also 
spend the largest hard disc space due to the installation of the GO database. However, Blast2GO 
was the only program with both local user-friendly interface and local command line interfaces.

Figure 4. Venn diagram. A. Diagram shows the number of non-classified sequences. Note that PANTHER had the 
lowest number of sequences without prediction and that 10 sequences were not classified by any of the assessed 
programs. B. Diagram shows the number of sequences correctly predicted. Note that the programs that shared most 
of the sequences correctly predicted were Blast2GO and InterProScan, and that those shared sequences are less than 
half of the total of hits for each program.

A

B

http://www.geneticsmr.com/year2015/vol14-4/pdf/gmr6593_supplementary.pdf
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DISCUSSION

In this study, we performed a wider assessment of protein function prediction programs than 
that performed in previous studies. We analyzed the total hits, hit level, performance assessment, 
and software characteristics. The total hits and hit level were assessed simultaneously in all 
programs with all test datasets.

Other studies compared the protein function prediction programs by measuring GO term 
distance or contingency table data (Pandey et al., 2006; Rentzsch and Orego, 2009; Blaby-Haas 
and de Crécy-Lagard, 2011; Henry et al., 2011). The proposal of GO is to characterize the gene 
product by ontologies rather than by function nomenclature (molecular name) as it is done in this 
work (Chitale and Kihara, 2011; The Gene Ontology Consortium, 2013). The function nomenclature 
is the role of the protein in the organism in which it is expressed (Tripton and Boyce, 2000) and 
it is present in the “definition” field of the GenBank format file (file format for gene sequences) or 
GenPept (format file for protein sequences) in NCBI (U.S. National Library of Medicine, 2014). The 
contingency table methodology used in other assessments needs to reduce the classifications into 
two classification categories and only allows the assessment of one program and one dataset at 
each time (Thomas et al., 2003a; Prati et al., 2008).

In this work, we applied a methodology that used GLMs for total-of-hits analysis and 
Equation 1 for level hit analysis, which enable a simultaneous assessment of all programs, test 
datasets, and functional classifications. This analysis suggested that the hit capacity depends 
on the test dataset, since the best-fitted GLM (including the program/dataset interaction effect; 

Figure 5. Execution time by program. Boxplot representations show the total execution time (A), the execution time by 
sequence (B), and the execution time by amino acid residue (C), for each program.

A B C
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Equation 2 and Figure 2) and level hit plots (Figure 3) showed that some datasets had more 
similarities between the programs and reference classifications. The dependence relationship 
between program and dataset can explain the observed differences in programs accuracy in other 
assessments. Blast2GO had 70% accuracy when annotating proteins from Arabidopsis sp (Conesa 
and Götz, 2008) and 47.7% F-score ( Radivojac et al., 2013), using GO term distance comparison 
in both cases, but with different sequence test datasets.

The literature describes an accuracy of no more than 80% for protein function prediction 
programs that use only sequence data (Conesa and Götz, 2008; Radivojac et al., 2013). We 
showed that only in one dataset, the vicinal oxygen chelate dataset, the hit rate was over 50% 
(~62%), and only for the InterProScan prediction. In any other prediction situations, all programs 
exhibited a hit rate or probability under 35%, which included Blast2GO, the program with the 
highest hit probability.

Although programs can predict protein function faster, cheaper, and easier than ex-
perimental data (such as RNA-seq or microarrays) (Friedberg, 2006; Chitale and Kihara, 2011; 
Clark and Radivojac, 2011), a prediction based only on sequence data can generate wrong 
deposits (misannotated sequences), thereby affecting the quality of sequence annotated data 
in public databases. The Non-redundant database of NCBI (NR) showed 40% of misannotated 
sequences in 2005, with 85% of them being annotation mistakes without specific evidence to 
support them (Brown et al., 2007). The use of sequence similarity data with other methodolo-
gies and data could improve the accuracy of these annotations (Blaby-Haas and de Crécy-
Lagard, 2011).

InterProScan presented different characteristics when compared to other assessed 
programs. It has an easy and fast installation, it does not use the NR database as reference, 
and it was the second program with more hits in protein function predictions. Additionally, 
InterProScan combines information from other databases (Pfam, Prosite and PANTHER) with 
manually curated data (Hunter et al., 2009), which results in low overlap with the output from 
those programs (Figure 4).

The methodologies for function prediction from experimental data are still not possible on 
the high-throughput scale, due to their high cost and slow speed (Godzik et al., 2007; Blaby-Haas 
and de Crécy-Lagard, 2011; Gerlt et al., 2012). Consequently, there is a gap for high-throughput 
protein characterization. Thus, there is a need to develop new methodologies to close this gap, 
such as the development of sequence-based function prediction programs that give a reliable 
function prediction.
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