Applying DNA barcodes for identification
of economically important species in
Brassicaceae

X.Q. Sun™, Y.Q. Qu'™, H. Yao?, Y.M. Zhang', Q.Q. Yan' and Y.Y. Hang'

'Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing,
China

?Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences,
Peking Union Medical College, Beijing, China

*These authors contributed equally to this study.
Corresponding author: Y.Y. Hang
E-mail: hangyueyu@cnbg.net

Genet. Mol. Res. 14 (4): 15050-15061 (2015)
Received June 11, 2015

Accepted August 11, 2015

Published November 24, 2015

DOl http://dx.doi.org/10.4238/2015.November.24.13

ABSTRACT. Brassicaceae is a large plant family of special interest; it
includes many economically important crops, herbs, and ornamentals,
as well as model organisms. The taxonomy of the Brassicaceae has long
been controversial because of the poorly delimited generic boundaries and
artificially circumscribed tribes. Despite great effort to delimitate species
and reconstruct the phylogeny of Brassicaceae, little research has been
carried out to investigate the applicability and effectiveness of different
DNA regions as barcodes - a recent aid for taxonomic identification - to
identify economically important species in Brassicaceae. In this study, we
evaluated the feasibility of five intensively recommended regions [rbcL,
matK, trnH-psbA, internal transcribed spacer (ITS), ITS2] as candidate
DNA barcodes to discriminate economic species of Brassicaceae in
China and try to establish a new digital identification method for economic
plants of Brassicaceae. All sequences of 58 samples from 27 economic
species (Brassicaceae) in China were assessed in the success rates of
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PCR amplifications, intra- and inter-specific divergence, DNA barcoding
gaps, and efficiency of identification. Compared with other markers, ITS
showed superiority in species discrimination with an accurate identification
of 67.2% at the species level. Consequently, as one of the most popular
phylogenetic markers, our study indicated that ITS was a powerful but
not perfect barcode for Brassicaceae identification. We further discuss
the discrimination power of different loci due to inheritance pattern,
polyploidization and hybridization in species-specific evolution. Further
screening of other nuclear genes related to species isolation as plant
barcode candidates is also proposed.
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INTRODUCTION

Brassicaceae (Cruciferae or mustard family) is a large plant family with approximately
338 genera and 3,709 species widely distributed globally. It is of special interest, as it includes
many economically important crops, herbs, ornamentals, and model organisms. The most
important edible oil crop is canola or rapeseed (Brassica napus L.), while mustard condiment
crops include Brassica juncea (L.) Czern. et Coss. and Sinapis alba L. Many species are also
important vegetable crops, e.g. Brassica oleracea L. Several species, e.g., Camelina sativa (L.)
Crantz, Crambe abyssinica Hochst. ex Fries, and Eruca sativa Mill., have potential as new edible/
industrial oil crops. Many crucifers are grown as ornamentals, e.g., Orychophragmus violaceus
(L.) O.E. Schulz, Matthiola incana (L.) R. Br. and others. Over 100 genera have been used for
medical purposes in virtue of biological constituents such as sinapine, cardiac glycoside, alkaloids,
flavonol, and phenols. The Chinese Pharmacopeia (2010) has admitted several botanical origins,
e.g. Raphanus sativus L. (Raphanus Semen), Lepidium apetalum Willd. or Descurainia Sophia
(L.) Webb ex Prantl. (Descurainiae Semen or Lepidii Semen), Isatis indigotica Fort. (Isatidis Radix)
and so on. Several representatives of the family, including Arabidopsis thaliana (L.) Heynh. and
Brassica spp., have achieved the well-accepted status of “model organisms” for genomic studies.

Brassicaceae is a natural family and can be easily distinguished morphologically from
species of other flowering families based on its highly conserved and fairly uniform flower
architecture. However, the taxonomy of the Brassicaceae has long been controversial because
of the often poorly delimited generic boundaries and artificially circumscribed tribes. Several
authors have tried to provide a natural system to divide the family of Brassicaceae into tribes or
genera (Schulz, 1936; Janchen, 1942; Al-Shehbaz, 1984). The characters traditionally used in
these studies are few; they include orientation of the radicle in relation to the cotyledons in the
embryo, fruit length-to-width ratio, fruit compression and dehiscence, number of rows of seeds
in each locule, trichome type, and features of the nectarines. However, most of the characters
considered are subject to convergent evolution, at least on the tribal and subtribal level (Hedge,
1976; Al-Shehbaz, 1984). Within the past two decades, several molecular phylogenetic studies on
Brassicaceae (Bailey et al., 2006; Koch et al., 2007; Beilstein et al., 2008; German et al., 2009;
Khosravi et al., 2009; Warwick and Hall, 2009; Couvreur et al., 2010; Warwick et al., 2010; German
et al., 2011; Goodson et al., 2011) have refined the tribal classification, resurrected several tribes
previously misrecognized, added the newly established ones, and adjusted limits of many genera.
Despite the substantial progress achieved during the past 20 years along the phylogenetic and
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systematic fronts of the family, many unresolved problems, especially the limits of tribes and the
discrimination of species, remain unaddressed.

Plant DNA barcoding has recently emerged as a tool for global species identification and
has proven extremely useful for numerous applications such as ecological forensics, identification
of traded materials, undertaking identifications where there is a shortage of taxonomic expertise
available, and assisting species discovery in some plant groups (reviewed in Hollingsworth et al.,
2011). In animals, the mitochondrial cytochrome c oxidase | gene (COl) has been favored in species
identification; however, this gene has been precluded as a universal plant barcode because of its
generally low rate of nucleotide substitution in plant mitochondrial genomes. Therefore, several
candidate markers have been proposed for use in plants, including coding plastid markers (matK,
rbcL, rpoB and rpoC1) (Kress et al., 2005; Chase et al., 2007; Lahaye et al., 2008), noncoding
spacers (psbA-trnH, atpF-atpH, ITS and ITS2) (Kress and Erickson, 2008; Chen et al., 2010; China
Plant BOL Group et al., 2011), or various combinations of several markers (Chase et al., 2007).

Despite efforts to delimitate species and reconstruct the phylogeny of Brassicaceae, little
research has been carried out to investigate the applicability and effectiveness of different DNA
regions as barcodes to identify species within Brassicaceae. This is especially true for economically
important species including edible and industrial oilseed, vegetable, herb, ornamental and fodder
crop species. In this study, we utilized five intensively recommended regions (rbcL, matK, trnH-psbA,
ITS, ITS2) to evaluate their feasibility as candidate DNA barcodes to discriminate economically
important Brassicaceae species in China and to establish a new digital identification method.

MATERIAL AND METHODS
Plant materials

Plant samples were collected from different locations in China and identified by one of our
authors, Prof. Yueyu Hang. In total, 58 individual samples belonging to 27 species, representing a
majority of economic species, were collected for further analysis. Fresh leaves were dried in silica
gel at the time of collection. Voucher specimens were deposited in the herbarium at the Kunming
Institute of Botany, Chinese Academy of Sciences (KIM) (Table 1).

DNA extraction, amplification, and sequencing

Genomic DNAwas extracted following a cetyl trimethylammonium bromide (CTAB) protocol
modified from Paterson et al. (2011). The universal primers rbcLa-f and rbcLa-rev (the Consortium
for the Barcode of Life (CBOL) recommended), 3F_KIM and 1R_KIM (CBOL recommended), trnH
and psbA (Sang et al., 1997), and ITS1 and ITS4 (White et al., 1990) were used in the amplification
of rbcL, matK, psbA-trnH, and ITS regions respectively.

Polymerase chain reaction (PCR) amplification of the four candidate barcodes was
carried out using the following program: a premelt of 3 min at 94°C, followed by 35 cycles of
45 s denaturation at 94°C, 30 s annealing reaction at 53°-58°C, and finally a 30 s extension
at 72°C. Each 20-pL reaction mixture contained 30 ng genomic DNA template, 2.5 mM MgCl,,
1X Mg-free DNA polymerase buffer, 0.12 mM dNTPs, 0.3 pM of each primer, and 1 U Taq
DNA polymerase. PCR products were examined electrophoretically on 0.8-1.2% agarose gels.
Purification and bidirectional sequencing were completed by Beijing Genomics Institute (BGlI)
using the amplification primers.
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Data analysis

As the recent intensively recommended DNA barcode candidate, the internal transcribed
spacer 2 (ITS2) was also adopted as the fifth region for species discrimination, and the sequences
of ITS2 were retrieved according to Keller et al. (2009) and GenBank annotations.

Sequences were aligned and adjusted manually using Sequencer v.4.5 software
(GeneCodes, Ann Arbor, MI, USA). The nucleotide sequence data of the four regions were
deposited in the GenBank database (Table 1). All genetic distances were calculated using MEGA
(5.0 Version) software. Average intra-specific distance, mean theta and coalescent depth were
calculated to determine intra-specific variation and average interspecific distance. Theta prime and
the minimum interspecific distance were calculated to determine interspecific divergence (Meier
et al., 2008; Chen et al., 2010). The distribution of intra-specific versus interspecific variability
was evaluated by assessment of the presence of DNA barcoding gaps. Moreover, BLAST 1 and
the nearest distance method were used to test the power of species identification as described
previously (Sun et al., 2012).

RESULTS
PCR amplification efficiency and the success rate of sequencing

The sequence information of the five DNA barcode candidates, rbcL, matK, trnH-psbA,
ITS and ITS2, is provided in Table 2. The lengths of alignable sequences ranged from 209 bp
for ITS2 to 747 bp for matK. rbcL was the most conserved region (529/577 nucleotides), based
on both sequence length and number of conserved sites. trnH-psbA had the greatest nucleotide
variation (233/351), followed by ITS2 (104/209) and ITS (195/517), based on sequence length
and number of variable sites. trnH-psbA had the richest parsimony (parsim)-informative sites
(182/351), followed by ITS2 (84/209), ITS (145/517) and matK (120/747), with rbcL being
the lowest. It could be inferred that trnH-psbA, ITS and ITS2 are the best regions for use as
DNA barcodes for phylogenetic reconstruction, whereas rbcl is the least suitable marker for
Brassicaceae.

Table 2. Sequence information of five candidate barcodes.

Marker Sequence length (bp) Alignment length (bp) Conserved sites (bp) Variable sites (bp) Parsim-informative sites (bp)
rbel 587-612 577 529 48 33
matK 773-882 747 566 181 120
trnH- psbA 253-447 351 109 233 182
ITS 474-625 517 287 195 145
ITS2 181-200 209 75 104 84

rbcL, matK, trnH-psbA and ITS were all successfully amplified using one pair of universal
primers per locus and were compared in the success rates of PCR amplification. As shown in Table
3, rbcL and ITS displayed the highest efficiency of PCR amplification, followed by trnH-psbA, with
matK being the lowest.

Genetics and Molecular Research 14 (4): 15050-15061 (2015) ©FUNPEC-RP www.funpecrp.com.br
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Table 3. Analysis of inter-specific divergence between species and intra-specific variation.

matK rbelL trnH-psbA ITS ITS2

All inter-specific distance 0.0183 +0.0170 0.0028 + 0.0043 0.0388 + 0.0524 0.0846 + 0.0700 0.0878 + 0.0702
Theta prime 0.0262 + 0.0156 0.0034 + 0.0042 0.0441 + 0.0456 0.0730 + 0.0429 0.0860 + 0.0437
Minimum inter-specific distance 0.0181 +0.0203 0.0025 + 0.0033 0.0245 + 0.0385 0.0355 + 0.0430 0.0419 + 0.0541
Al intra-specific distance 0.0135 +0.0120 0.0012 + 0.0035 0.0325 + 0.0567 0.0607 + 0.0797 0.0706 + 0.0972
Theta 0.0180 + 0.0171 0.0027 + 0.0050 0.0403 + 0.0583 0.0718 + 0.0557 0.0876 + 0.0798
Coalescent depth 0.0250 + 0.0220 0.0035 + 0.0058 0.0595 + 0.0776 0.1125 + 0.0865 0.1346 + 0.1124
Success rate of PCR amplification /% 89.66 100 98.28 100 -2

alTS2 sequences were retrieved from ITS sequences using methods developed by Keller et al., 2009.

Intra-specific variation and inter-specific divergence

A favorable barcode should possess a high inter-specific divergence to distinguish
different species (Gao et al., 2010). Six metrics were used to characterize inter- versus intra-
specific variations (Lahaye et al., 2008). ITS2 and ITS exhibited significantly higher inter-specific
discrimination than rbcL, matK and trnH-psbA. The intra-specific variations were similar, with ITS2
and ITS contributing the largest, and rbcL the smallest variations (Table 3). ITS2 and ITS were
found to have high inter-specific divergence and high intra-specific variation, which indicated that
ITS2 and ITS could be proposed as the most suitable DNA barcodes to distinguish the species of
economic importance in Brassicaceae.

Barcoding gap assessment

A robust DNA barcode should have separate and non-overlapping genetic variations
between intra- and inter-specific samples. The distributions of intra-specific versus inter-specific
divergence were examined in the seven barcodes at a scale of 0.001 distance units. Although
no distinct barcoding gaps, as typical of CO1, were found in the distributions of all the loci, the
distributions of intra-specific versus inter-specific divergence does suggest a clearly defined range,
where the intra-specific variation is considerably lower than the inter-specific divergence (Figure
1). Among them, ITS revealed a relatively well separated distribution, indicating significantly higher
inter-specific divergences than their corresponding intra-specific variations, whereas the other four
candidate barcodes displayed a distinct overlap without gaps between intra-specific variation and
inter-specific divergence.

Identification efficiency of the DNA barcodes

BLAST 1 and the nearest genetic distance were utilized to assess correct discrimination
using different barcodes. The results based on BLAST 1 method indicated that ITS and trnH-
psbA had the list highest identification efficiency (67.2 and 63.2%) at the species level, followed
by ITS2, matK and rbcL. At the genus level, both matK and rbcL had the highest success rate
(78.9 and 78.6%), meanwhile trnH-psbA, ITS and ITS2 also performed well with 76.4, 73.2 and
64.3% successful identification rates, respectively. Similar results could be obtained by the nearest
genetic distance method, while identification efficiency by the nearest genetic distance method was
much lower than BLAST 1 (Table 4).
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Figure 1. Relative distribution of inter-specific divergence between congenic species and intra-specific variation.
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Table 4. Comparison of identification efficiency for candidate barcodes using different methods of species
identification.

Method  No. of species No. of samples Successful identification Incorrect identification Ambiguous identification
Species Genus Species Genus Species Genus
rbel BLAST 1 27 58 56.9 78.6 0 0 43.1 21.4
Distance 27 58 56.9 67.9 0 0 43.1 321
matK BLAST 1 25 52 61.1 78.9 0 0 38.9 21.1
Distance 25 52 61.1 71.2 0 0 38.9 28.8
trnH-psbA  BLAST 1 27 57 63.2 76.4 0 0 36.8 23.6
Distance 27 57 56.1 65.5 0 0 43.9 345
ITS BLAST 1 27 58 67.2 73.2 0 0 32.8 26.8
Distance 27 58 60.3 67.9 0 0 39.7 321
ITS2 BLAST 1 27 58 60.3 64.3 0 0 39.7 35.7
Distance 27 58 53.4 62.5 0 0 46.6 375
DISCUSSION

Assessment of the applicability of the candidate barcodes

Several DNA regions, the majority taken from the plastid genome, have been tested
for universality and discriminatory power in plants (Kress et al., 2005; Hollingsworth et al.,
2009). The two-marker combination of rbcL + matK was proposed as the core barcode for land
plants in 2009 (CBOL Plant Working Group, 2009). The Third International Barcoding of Life
Conference in Mexico City suggested that a third chloroplast DNA region (cpDNA) (trnH-psbA),
and the nuclear ribosomal internal transcribed spacer (ITS) regions, should be treated as
complementary loci. Despite the fact that coDNA regions have been proposed repeatedly for
plant barcoding, our results suggest these cpDNAregions cannot establish genetic delimitations
between closely related species. This may be attributable to the maternal inheritance of cpDNA
in most angiosperms. Thus, plastid variants are only dispersed by seed and cannot travel as
far as nuclear alleles, which are dispersed by both pollen and seed (Petit et al., 2005). The
limited dispersal of the plastid plant barcodes consequently have a built-in limitation to tracking
species boundaries in some cases, which may provide a satisfactory explanation for the low
discrimination power of plastid plant barcodes.

As summarized by Hollingsworth (2011), hybridization or polyploid speciation can
lead to incongruence between barcode sequences and taxon concepts. Past hybridization or
allopolyploidization can lead to shared haplotypes among species (Fazekas et al., 2009). As
many as three polyploidization events have occurred in Brassicaceae, with the last one pinpointed
asspecific for “core Brassicaceae” (Schranz and Mitchell-Olds, 2006). Consequently, new polyploid
species could be generated by autopolyploidy or through inter-species hybridization; for example,
Brassica napus (N = 19) was formed by hybridization of B. rapa L. (N = 10) and B. oleracea (N =
9). Taxonomic treatment of polyploid derivatives and their respective progenitors is problematic.
Moreover, in some cases, the taxonomic groups were poorly defined according to limited
morphological characters under convergent evolution, which makes Brassicaceae barcoding an
even greater necessity. An ideal DNA barcode should be universal, reliable, cost-effective and
show good discriminatory power (CBOL Plant Working Group, 2009). Despite the highest list
species-level identification efficiency (67.2%) of ITS, in this study, none of the five DNA barcode
candidates met all these criteria.
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ITS and ITS2, which is better as an ideal DNA barcode?

The ITS or its part sequence, ITS2, have been suggested repeatedly as barcodes for
plants (Kress etal., 2005; Chen et al., 2010). The ITS generally has a greater discriminatory power
over plastid regions at low taxonomic levels; however, three primary concerns have prevented
it from being a core plant barcode. Key concerns regarding ITS are 1) incomplete concerted
evolution can lead to divergent paralogous copies within individuals, 2) fungal contamination,
and 3) difficulties in amplifying and sequencing this region from diverse sample sets. In our
analysis, direct sequencing of single-copy ITS sequences was successful in all sampled species
(representatives from all three lineages in Brassicaceae), and no fungal contamination was
detected. It seems the extent of problems concerning ITS as a core plant DNA barcode is not
as pervasive, at least in Brassicaceae, as previously estimated. ITS2 was proposed as an
alternative plant barcode with the advantage of easily amplifying and sequencing (Chen et al.,
2010; Yao et al., 2010), and it has proven useful in several studies (Gao et al., 2010). Our study
revealed the discriminatory power of ITS2 is generally 7% lower than ITS. Previous studies have
suggested that ITS1 and ITS exhibit higher inter-specific divergence relative to ITS2 (Kress et al.,
2005). Thus, the use of ITS2 involves a trade-off between using a shorter region of ITS to make
recovery and sequencing easier, while sacrificing the number of available characters. Moreover,
the preclusion of ITS from being a core plant barcode needs rigorous consideration instead of
few formal empirical estimates.

As suggested by Chase and Fay (2009), nuclear genes can provide more information
than organelle DNA, which is inherited from only one parent. Multiple attempts have been made to
shed light on the way to the ideal plant barcode. Five nuclear low-copy loci (CHS, DET1, COP1,
PGIC1, and RPS2) were investigated to discriminate two species of Pugionium (Brassicaceae),
while only one locus (DET1) related to flowering regulations was able to delimitate species (Wang
et al., 2011). It is proposed that genes related to species isolation (“speciation genes”) or linked
genes such as mitochondrial DNA (mtDNA) for animals may be more effective in discriminating
between closely related species. However, until now, it has been difficult to find such a locus
that is universally linked to the speciation of the different plant groups. Recently, 59 low-copy
nuclear genes were carefully selected in analysis of angiosperm phylogeny and resulted in highly
supported relationships (Zeng et al., 2014), and also highlighted the feasibility of low-copy nuclear
loci in the barcoding of plants.
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