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ABSTRACT. Black locust (Robinia pseudoacacia) is a tree in the subfamily
Faboideae, native to North America, that has been naturalized and widely
planted in temperate Europe and Asia. Black locust has important ecological and
economic value, but its quality needs improvement. Hybridization programs are
important for black locust breeding, but the low rate of fruit set after controlled
pollination limits both its breeding and that of other monoclinous plant species
that share this problem. In this study, we investigated gene expression in
emasculated black locust flowers using the cDNA-amplified fragment length
polymorphism technique to determine why the rate of fruit set is low after
controlled pollination. Flowers that were emasculated after being frozen in liquid
nitrogen were used as controls. Changes in the flower transcriptome were more
dramatic at 5 h after emasculation than at 48 h. Injury caused by emasculation
decreased the expression levels of genes associated with metabolism, growth
regulation, signal transduction, and photosynthesis, and it increased the
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expression of genes related to stress-response metabolism, signal transduction,
and promotion of senescence. The changes in the expression levels of these
genes had negative effects on sugar metabolism, protein metabolism, lipid
metabolism, energy metabolism, matter transport, signal transduction, osmotic
regulation, pH regulation, and photosynthesis. Thus, emasculation accelerated
flower senescence, resulting in low fruit set.

Key words: Black locust; Robinia pseudoacacia; cDONA-AFLP;
Emasculation

INTRODUCTION

Black locust (Robinia pseudoacacia) is a monoclinous plant in the subfamily Faboideae that
is native to North America, and it is widely planted and naturalized elsewhere in temperate Europe
and Asia. Black locust has considerable ecological and economic value (Keeler, 1900; Yuan et al.,
2013), but there are many problems that restrict cultivation of the tree. The breeding method most
commonly used for black locust depends mainly on genotypic introduction and selection, and it has
made significant contributions to breeding programs. However, the availability of desirable traits for
introduction is limited, and genotypic selection is an uncertain basis for breeding programs. Space
flight mutation-breeding technology has been applied to black locust. However, the main problems of
this method are that the beneficial mutation frequency is still low, and the direction and character of the
variation is difficult to control (Yuan et al., 2010). Breeding programs based on controlled pollination
provide an important alternative approach for breeding black locust. However, low fruit set rates after
controlled pollination result in insufficient numbers of offspring for progeny selection, and most flowers
that result from artificial hybridization abscise approximately 1 week after artificial pollination. The low
rate of fruit set associated with the use of artificial hybridization is shared with other monoclinous plant
species such as sweet cherry (Hedhly et al., 2009), plum (Guerra et al., 2010), amarelle, and other
plants with hermaphroditic flowers (Guerra et al., 2010). This phenomenon has presented a major
impediment to the artificial cross breeding of black locust and other monoclinous plants.

The cDNA-amplified fragment length polymorphism (AFLP) technique is an efficient and
simple mRNA fingerprinting method for the isolation of differentially expressed genes (Bachem, 1996).
This technique is based on the selective PCR amplification of restriction fragments produced from a
restriction digest of total genomic DNA (Vos et al., 1995). This is a robust and high-throughput tool for
analyzing genome-wide expression and for gene discovery where prior knowledge of gene sequences
is not a prerequisite. The high sensitivity of this method makes the identification of rare transcripts
possible (Fukumura et al., 2003). The cDNA-AFLP technique has been improved to avoid the possibility
of multiple-transcript-derived fragments (TDFs) arising from a single gene or cDNA (Breyne et al., 2003).

In this study, we used the cDNA-AFLP technique to investigate the effect of emasculation
damage on gene expression to obtain a more comprehensive understanding of the effects of
damage caused by emasculation on ageing and the rate of seed set after artificial hybridization.

MATERIAL AND METHODS
Plant material

Flowers were collected from an adult black locust tree exhibiting normal growth and
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development at the Mijiabao Forestry Station in Beijing, Yanqging, China. Pollen was collected from
ripe flowers, stored in glass bottles containing silica gel at 4°C, and used within 3 days after collection
to avoid viability loss. To emasculate flowers, we removed partial petals and entire stamens 1 day
prior to anthesis to avoid contamination from self-pollen, and the flowers were placed in paper bags
(Figure 1). After removal from the bags at 24 h after emasculation, the emasculated flowers were
pollinated artificially with prepared pollen, and the flowers were returned to bags for 7 days.

Figure 1. Treatment of black locust flowers by (A) emasculation and (B) bagging.

Unemasculated control flowers were placed in paper bags 1 day prior to anthesis, and
were removed from the bags immediately before beginning artificial pollination. After pollination,
the flowers were bagged for 7 days. Therefore, differences between control and emasculated
flowers were due only to the effects of emasculation (Sun et al., 2013).

We collected the emasculated and control flowers at 5 and 48 h after emasculation. To ensure
consistency in the processing of materials, the control flowers were first frozen in liquid nitrogen. The
frozen corolla and stamens were treated identically to those of emasculated flowers so that differences
between the treatment and control would be due only to physiological responses to emasculation and
not to differences in sample processing. All samples were frozen immediately in liquid nitrogen and
transported to the laboratory, where they were stored at -80°C until use for cONA-AFLP analysis.

Total RNA extraction, mRNA isolation, and cDNA synthesis

Total RNA was extracted from 100-g tissue samples using an Aidlab EASYspin Plus Rapid
Rlant RNA Extraction Kit (Aidlab Biotechnologies Co, Ltd., China). RNA quality and quantity were
determined using a NanoDrop1000 spectrophotometer (NanoDrop Technologies, USA). RNA samples
with A, /A, ratios between 1.9 and 2.1 and A, /A, ratios between 2.0 and 2.5 were assessed for
RNA integrity by electrophoresis on 1.5% agarose gels alongside an RNA ladder (Invitrogen, Carlsbad,
CA, USA). RNAs that met the quality criteria were used to synthesize cDNA. PolyA mRNA was isolated
from total RNA (0.5-1.0 g) using a PolyATract mRNA isolation system (Promega, Madison, WI, USA),
according to the manufacturer instructions. For cDNA synthesis, mMRNAs from the collected tissues
were pooled and used for first-strand cDNA synthesis, followed by second-strand synthesis, using a
SuperScript double-stranded cDNA synthesis kit (Invitrogen) per the manufacture instructions with

custom synthesized poly-d[T]25 oligonucleotides (Alpha DNA, Canada).

Genetics and Molecular Research 14 (4): 15822-15838 (2015) ©FUNPEC-RP www.funpecrp.com.br



Transcriptional profiles of black locust emasculated flowers 15825

cDNA-AFLP analysis

Approximately 500 ng double-stranded cDNA were used for standard AFLP template
production, according to the method of Vos et al. (1995). The cDNA was digested using Msel
and EcoRl restriction enzymes (New England Biolabs, Inc., USA). The digested products were
ligated to adapters using the following primer sequences: Eup, 5-CTCGTAGACTGCGTACC-3';
Edown, 5-AATTGGTACGCAGTCTAC-3'; Mup, 5-GACGATGAGTCCTGAG-3'; and Mdown,
5-TACTCAGGACTCAT-3".

Equal amounts of preamplified products were amplified using two primers with selective
nucleotides at their 3'-ends: EO, 5'-GACTGCGTACCAATTCA-3' and MO0, 5-GATGAGTCCTGAGTAA
C-3'. A total of 51 primer combinations were tested. Four microliters of the AFLP products were
heat-denatured and resolved on a 6% denaturing polyacrylamide sequencing gel containing 0.5X
TBE electrophoresis buffer using a Sequi-Gen system (Bio-Rad Laboratories, Hercules, CA, USA).
The gels were silver-stained using a Silver Sequence kit (Promega) according to the manufacturer
instructions. All reactions for restriction digestion, adapter ligation, preamplification, and selective
amplification were performed according to procedures described by Subudhi (1998).

Gel bands corresponding to polymorphic fragments were excised from the gel with a
scalpel after wetting the bands with 6 pyL ddH,O. The gel bands were placed in 20 uL ddH,O,
incubated at 95°C in a water bath for 10 min, and centrifuged at 12,000 rpm for 5 min, and the
supernatants were recovered as templates. Reamplification of the fragments was performed using
the same selective amplification primers used for preamplification. Reactions contained 8.5 uL
ddH,O, 2 uL EO (selective amplification primer, 10 pM/uL) or MO (selective amplification primer, 10
pM/uL) primers, 22.5 uL 2X taq Mix (TaKaRa, Dalian, China), and 10 yL enzyme ligation product.
PCR conditions used in reamplification were the same as those used for the preamplification step.

Sequencing of fragments and gene ontology annotation

Reamplified PCR products (5 pL) were resolved on 2% agarose gels. Those that
produced clear, single bands were submitted for sequencing (Biomed Corporation, China).
The sequences were analyzed using the BLASTx software (http://blast.ncbi.nim.nih.gov/blast/
Blast.cgi?PROGRAM=blastx&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome) to identify
homologous proteins in the GenBank database at the National Center for Biotechnology Information
(NCBI). For sequences with low homology to protein sequences, the BLASTn software (http://
blast.ncbi.nim.nih.gov/blast/Blast.cgi?PROGRAM=blastn& PAGE_TYPE=BlastSearch&LINK_
LOC=blasthome) was used to identify homologous gene fragments in the GenBank database at
NCBI. The Uniprot Protein (UniProtKB, http://www.uniprot.org/) database was searched to further
characterize the potential functions of the homologous proteins and gene fragments.

Verification of expression using real-time quantitative PCR (RT-qPCR)

RT-gPCR was performed using a 7500 Fast Real-Time PCR machine (Applied Biosystems,
CA, USA) and a SYBR Ex Taq Kit (TaKaRa). The PCR program included an initial denaturation step
at 95°C for 3 min; 40 cycles of 30 s at 95°C, 30 s at 60°C, 30 s at 72°C, and a final melting curve of
70°-95°C. PCRs were prepared in 20-uL volumes containing 2 uL 10-fold-diluted synthesized cDNA,
10 pL 2X SYBR Premix Ex Taq, 0.4 pL 10 uM primer, 0.5 pL 50X ROX reference dye, and 6.9 yL
ddH,O. The melting curve was used to verify the specificity of amplified fragments. All reactions were
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performed in triplicate for technical replication, with the biological replication of three plants per test.
Expression levels were standardized using ACTIN gene expression, and the RT-gPCR data were
analyzed using ANOVA. The primer pairs used for RT-qPCR are listed in Table 1.

Table 1. Primer pairs used for RT-PCR.

Gene name Forward primer Reverse primer PCR efficiency (%)
T3 AAGAGCCATCGCAGGTAT TTGGGATTGTTCAAGGGA 99.1
T5 CTTCTATCCTGGTTCTCA GGAAGTTTCAGTTTCCTA 101.6
T12 GTAAGTGGCTGGGTTGCG GAAGTGGGTGGGTTGGAG 99.3
T13 AAGGGCTCCAATTTCTC TGAAGCCATTGGTTGAT 101.1
T18 GAGCATCATCAAAGGGAC CAAGTGGGACATAAGTTCA 99.5
T25 ATTATTCCGTGTCTTTCG GGTTACAGGGAGTGTTCTA 98.8
T90 ACAGGACAAACGGCATAA GTCTTCAGAACTGGAGGG 102.4
T96 TGGGACTCTGGTGTAAGC CTCCGATGGTAGATTTGG 102.3
Actin TTGCCTTGGATTATGAACA GATGGCTGGAACAGAACTT 99.2
RESULTS

Sequence analysis

We used 80 pairs of selective amplification primers to identify differences in gene
expression between emasculated and control flowers at 5 and 48 h time points after emasculation.
Approximately 3000 DNA fragments were amplified (Figure 2), 100 of which were TDFs. The
sequenced products of reamplification included those that resolved as clear, single bands using
agarose gel electrophoresis and those that exhibited band sizes that were the same on a 6%
polyacrylamide gel. Seventy-three fragments were sequenced successfully. Both BLASTn and
BLASTXx softwares were used to identify homologous protein and gene sequences in the GenBank
database, and functional identifications were refined by searching the UniProtKB database. The
results of the homology analysis are presented in Table 2.

Figure 2. Electrophoretogram of cDNA-AFLP. A, B, C, D, E, F indicate different primer pairs. Lane 1: control flowers at
5 h after emasculation. Lane 2: flowers at 5 h after emasculation. Lane 3: control flowers at 48 h after emasculation.
Lane 4: flowers 48 h after emasculation.
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Expression analysis and functional classification of TDFs

The differential expression characteristics of the TDFs are summarized in Table
3. According to Bhalerao et al. (2003), we divided the TDFs into eight categories based on
the functions of their homologous sequences in GenBank: cell metabolism, ageing-related
(senescence), stress responses, signal transduction and growth regulation, transcription factor,
photosynthesis, unknown function, and no homology. All of the categories containing TDFs are
shown in Table 4.

TDFs related to cell metabolism

Of the sequenced TDFs, 19.2% had functions related to cell metabolism, indicating the
marked effect of emasculation on cell metabolism. The expression levels of some genes with
functions related to cell metabolism were reduced by emasculation. The TDF designated T48 was
homologous to aldolase, which catalyzes the catabolism of galactitol, N-acetyl-galactosamine, and
d-galactosamine, and it plays an important role in glucose metabolism (Brinkkoetter et al., 2002).
T48 was expressed highly in control flowers at 5 and 48 h, but its expression was reduced in
emasculated flowers at both time points.

The homolog of T49 maintains the length of very-long-chain fatty acids between 26 and
30 carbon atoms. Very-long-chain fatty acids are hydrophobic, high-molecular weight polymers
that prevent plant leaves from becoming too dry, providing a suitable environment for pollen
(Trenkamp et al., 2004). The T49 homolog also improves the performance of the cuticle of
epithelial cells by catalyzing lipid synthesis (Pruitt et al., 2000). In addition, the T49 homolog
prevents abnormal pollen hydration and germination, promotes ovule formation, and regulates
epithelial cell growth during pistil morphogenesis (Lolle and Cheung, 1993). These results
indicated that T49 is involved in pollen and ovule development. T49 was expressed at high
levels only in the control flowers at 5 h, and its expression was barely detectable in emasculated
flowers at 5 h. Thus, emasculation had a negative effect on the normal development of male and
female reproductive organs.

The homolog of T79 promotes the insertion of intrinsic proteins into the cell membrane,
and it plays a role in intrinsic protein folding and complex formation. It also promotes the synthesis
and translocation of lipoprotein in the cell membrane, suggesting that T79 may play important roles
in cell membrane function. T79 was highly expressed in the control flowers at 48 h, but showed
little expression in the emasculated flowers at 48 h, which suggests that emasculation may affect
cytomembrane function.

The homolog of T80 was a carboxyl esterase gene, the product of which catalyzes the
hydrolysis of esters, sulfate esters, and amides. The homolog of T94 has endopeptidase activity,
and is involved in protein metabolic processes (Yu et al., 2005). The homolog of T95 promotes the
synthesis of riboflavin, which is involved in in vivo biological oxidation, energy metabolism, and
metabolism associated with cell growth. T80, T94, and T95 were all expressed highly in the control
flowers at 5 h, but their expression was almost undetectable in the emasculated flowers, indicating
that emasculation had a negative impact on the material and energy metabolism of cells and on
pollen and ovule growth. These effects may explain the premature senescence and abscission and
the low fruit set rate of emasculated flowers. T57 was homologous to a 16S ribosomal ribonucleic
acid (rRNA) gene, and it was expressed in the control flowers at 5 h; however, it showed little
expression in the emasculated flowers.
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Table 3. Expression characteristics of transcript-derived fragments (TDFs).
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the gene expression level was low. The absence of e or o indicates that expression was not detected.
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Table 4. Functional classification of differentially expressed genes induced by emasculation injury.

TDF function TDF ID TDF quantity Percentage (%)
Cell metabolism T15, T23, T43, T47, T48, T49, T57, T69, T76, T79, T80, T88, T94, T95 14 19.2
Ageing-related T6, T13, T45, T46, T68, T77, T103 7 9.6
Stress response T11, T24, T25, 728, T66, T108 6 8.2
Signal transduction and T14,T22, T31, T39, T63, T86, T87, T90, T96, T100 10 13.7
growth regulation
Transcription factor T3,T19, T101 3 4.1
Photosynthesis T53 1 14
Unknown function T5,T17,T18, T34, T62, T67, T70, T89, T91, T92, T93, T102, T104, T106, 14 20.5
No homology T7,T9, T12,T26, T27, T32, T33, T35, T36, T38, T44, T64, T65, T72, T73, 18 23.3
T105, T107, T109
Total 73 100.0

TDF = transcript-derived fragments.

Emasculation promoted the expression of multiple genes related to cellular metabolism.
T15 was homologous to tubulin, and it was expressed highly at 5 h after emasculation. The homolog
to both T23 and T76 regulates the localization, synthesis, and decomposition of hyaluronan, which
is involved in water retention, and it also plays important roles in the maintenance of normal
biological cell function. Emasculation increased the expression of both T23 and T76. AT43 homolog
catalyzes the synthesis of negatively charged monosaccharides, which are essential components
of pectin (Usadel et al., 2004), and its expression also increased at 5 h after emasculation. A T47
homolog promotes the synthesis of ATP, consistent with a role in cellular metabolism, and it was
highly expressed at 5 h after emasculation. T88 is homologous to galactokinase, which catalyzes
the dephosphorylation of ATP, and its expression increased dramatically in flowers at 48 h after
emasculation. These results indicated that responses to emasculation in flower organs include
increased water retention, increased cell wall synthesis, and increased energy metabolism. These
responses reduce the negative effects of injury from emasculation on flower development. T69 was
homologous to a 28S large subunit rRNA gene involved in protein synthesis, and its expression
increased at 5 h after emasculation relative to the control flowers.

TDFs related to senescence

TDFs related to senescence accounted for 9.6% of all sequenced TDFs. T6, T77,
and T103, which promote Xpr1 protein expression, were homologous. Xpr1 induces apoptosis
after binding to heterophil (Bamunusinghe et al., 2013) or polytropic retrovirus in humans.
This result suggested that T6 induces senescence and apoptosis of black locust flower organs
after retrovirus infection. T6, T77, and T103 expression in flowers was higher at 5 and 48 h
after emasculation compared to the control flowers. T45 and T68 were both homologous to
ubiquitin ligase, which promotes protein ubiquitination and subsequent hydrolysis into small
polypeptide fragments and amino acids. T45 and T68 were homologous, and the expression of
both increased in flowers at 48 h after emasculation. The function of a T46 homolog was related
to the decomposition of metaprotein in chloroplasts, and it was expressed highly at 5 h after
emasculation.

Because the Arabidopsis-SKP1-like (ASK) gene, homologous to T13, is a substrate
of ubiquitin ligase that may promote protein hydrolysis, we classified T13 as being functionally
related to senescence. In the ASK7 mutant of Arabidopsis thaliana, vegetative and reproductive

Genetics and Molecular Research 14 (4): 15822-15838 (2015) ©FUNPEC-RP www.funpecrp.com.br



J.X. Wang et al. 15832

growth, leaf area, cell number, corolla number, and anther number were all markedly decreased.
ASK increases plant sensitivity to auxin (Maldonado-Calderon et al., 2012), and it affects the
normal separation of alleles in the microsporocyte during the post-meiotic phase, thus causing
male sterility in Arabidopsis (Yang et al., 1999). Furthermore, ASK plays important roles in corolla
and stamen development, and the absence of ASK has adverse effects on embryo formation
and postembryonic development (Liu et al., 2004). Based on these characteristics, T13 is likely
to be involved in protein hydrolysis, and it is classified as functionally related to senescence.
However, the protein hydrolyzed by ASK functions as a gene repressor that promotes growth
and development, so T13 may indirectly promote plant growth and development. Relative to
the control flowers, T13 expression decreased markedly at both 5 and 48 h after emasculation,
indicating that emasculation had a negative effect on flower development, embryo formation,
and development during the postembryonic period.

TDFs related to stress responses

T11 and T108 were both homologous to a gene encoding a lipoxygenase inducer. This
type of gene plays roles in insect resistance, induction of cell senescence, and responses to
mechanical injury to cells (Coffa et al., 2005). T11 was expressed highly in flowers at 5 h after
emasculation, and T108 expression increased at 48 h after emasculation. Both T24 and T25 were
homologous to a putative disease-resistance protein. The function of the T28 homolog was related
to the resistance response of alkaline anaerobic bacteria to oxygen (Wagner et al., 2001). A gene
homologous to T66 showed a strong antibacterial effect in vitro (Shi et al., 2014). T24, T25, T28,
and T66 all exhibited little or no expression at 5 h in the control flowers, but their expression levels
were markedly increased in the emasculated flowers.

TDFs related to signal transduction and growth regulation

Genes functionally related to signal transduction and growth regulation accounted for
16.4% of the sequenced TDFs. The expression of many of the TDFs in these categories decreased
after emasculation. T39 was expressed highly at 5 and 48 h in the control flowers, but showed
very little expression in the emasculated flowers. The T39 homolog, a component of the adaptor
protein complex 2 (AP-2), belongs to the cohesion protein complex. AP promotes the formation
of vesicles encapsulated by clathrin and participates in the identification of target proteins to be
transported (Kelly et al., 2008). AP also promotes the endocytosis of vesicles containing target
proteins. Endocytosis of vesicles and the target proteins requires the participation of AP (Owen et
al., 2004). The T39 homolog also plays important roles in intracellular transport. The Arabidopsis
homologs of T63 belong to the BT protein family, which includes auxin-response proteins that
play important roles in male and female gametophyte development in Arabidopsis (Robert et
al., 2009). BT also reduces the inhibition of Arabidopsis seed germination by abscisic acid and
carbohydrates and increases the plant response to auxin (Mandadi et al., 2009). T63 was highly
expressed in control flowers at 5 h, but showed very little expression in the emasculated flowers.
T86 and T100 homologs are GTP-binding proteins necessary for the transport of protein and
RNA from the nucleus to the cytoplasm. T86 expression decreased at 48 h in the emasculated
flowers, and T100 was highly expressed only in control flowers at 48 h. T96 was homologous
to the Rab11 gene, which is important in the control of cellular osmotic pressure (Harris et al.,
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2001). T96 was expressed highly in control flowers at 5 and 48 h, but expressed at low levels
in the emasculated flowers.

The expression of many of the TDFs that were functionally related to signal transduction
and growth regulation increased after emasculation. T14 was homologous to a gene encoding
a plant microtubule binding protein, which guides the growth direction of cortex microtubules in
some organs (Yao et al., 2008). T14 expression increased at 5 h in the emasculated flowers.
T22 was homologous to an anticoagulation protein, which promotes the recycling of membrane
receptor proteins and plays an important role in the regulation of intercellular signal transduction
(Heazlewood et al., 2004). T22 was highly expressed at 5 and 48 h after emasculation, but was
expressed at very low levels in the control flowers. The T31 homolog inhibits signal transduction
mediated by the epidermal growth factor receptor (Yoo et al., 2004). T31 expression was
increased markedly at 5 h in the emasculated flowers relative to the control flowers. T87 was
homologous to an auxin-induced protein that may play roles in the connection between the cell
wall and the cytoplasm (Neuteboom et al., 1999). T87 was highly expressed only in flowers 5 h
after emasculation. T90 was homologous to a calcium binding protein that promotes cell division
and trichome formation (Reddy et al., 2004). T90 was highly expressed at 5 h in both the control
flowers and emasculated flowers, but exhibited very little expression at 48 h in either.

TDFs related to transcription factors

Three TDFs were homologous to transcription factor genes. T3 was homologous
to a transcription factor belonging to the GRAS family, the function of which remains to be
determined. T19 was homologous to an NAC transcription factor that promotes cell proliferation,
differentiation, and division (Smyczynski et al., 2006). T3 and T19 were both expressed highly
at 5 and 48 h after emasculation, but showed little expression in the control flowers. T101 was
homologous to a retroelement that might bind nucleic acid and zinc ions. T101 was expressed
highly at 5 h after emasculation.

TDFs related to photosynthesis

T53 was homologous to a cytochrome C gene or a gene involved in the transfer of
sodium and hydrogen ions. Cytochrome C maintains photosystem stability and promotes the
release of oxygen. Sodium and hydrogen ion transfer regulates intracellular pH (Taglicht et al.,
1991), but more data are needed to clarify the function of T53. T53 was highly expressed in the
control flowers at 5 h, but exhibited little expression in the emasculated flowers.

RT-qPCR analysis

The expression levels of eight TDFs, representing genes that exhibited various
expression patterns in response to emasculation damage, were determined by RT-qPCR.
The black locust ACTIN gene was used as an internal control to which transcript abundance
was normalized. The transcript fold-ratios determined by RT-gPCR were similar to those
determined by cDNA-AFLP for all eight TDFs, confirming the reliability of the cDNA-AFLP
technique (Figure 3).
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Figure 3. Transcription of eight selected black locust genes at various stages of emasculation (Em) treatment as
determined by RT-qPCR.
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DISCUSSION

Of the 73 TDFs sequenced, 40 were differentially expressed between emasculated and
control flowers at 5 h, and 10 TDFs were differentially expressed at 48 h. Moreover, 21 TDFs were
differentially expressed between emasculated and control flowers at both 5 and 48 h. In addition,
two genes were expressed at very high levels in both emasculated and control flowers at 5 h, but
exhibited no expression at 48 h in either. These results imply that the impact of emasculation on
gene expression was greater at 5 h than at 48 h.

Based on our results, the emasculation of black locust flowers has multiple effects on
cellular metabolism. Aldolase activity is inhibited, thereby affecting sugar metabolism (Brinkkoetter
et al., 2002). The synthesis and metabolism of long-chain fatty acids are affected, which allows
flowers to become dry with subsequent negative effects on pollen growth (Trenkamp et al., 2004).
The properties of epithelial cells are altered (Pruitt et al., 2000), which hinders the differentiation of
pollen and stigma and inhibits epidermal cell growth in ovules (Lolle and Cheung, 1993). Membrane
protein metabolism is inhibited, thus affecting the transport of membrane materials. Ribosome
function is affected, resulting in the inhibition of protein synthesis. In combination, these effects of
flower emasculation adversely affect substance metabolism, energy metabolism, and pollen and
ovule development, and they may accelerate the flower ageing process, resulting in a reduced rate
of seed set after artificial hybridization.

Not all of the responses of black locust flowers to emasculation were negative. Plants can
cope with the stress caused by damage through metabolic changes. Our results showed that the
expression of a tubulin-related gene increased in emasculated flowers. The levels of hyaluronic acid
increased in emasculated flowers, thereby improving the water retention capacity of the cells and
enhancing the maintenance of cell function. Emasculation can promote cell wall synthesis by inducing
pectin synthesis, which may play a role in cellular resistance to external stress (Usadel et al., 2004).

Emasculation damage can also promote the synthesis and dephosphorylation of ATP, both
of which are important for cellular energy metabolism. Emasculation increased the expression of a
288 large subunit rRNA gene, suggesting that the cells may be able to resist injury-induced stress
through enhanced protein synthesis.

The expression of the Xpr1 protein, which is associated with ageing, was upregulated.
The Xpr1 protein in combination with retroviruses can induce apoptosis in the human body (Yan
et al., 2010), which suggests that emasculation damage may cause susceptibility to external viral
infection and accelerate senescence and apoptosis. Emasculation also increased the levels of
ubiquitin ligase, which promotes protein degradation.

Emasculation reduced SKP1 gene expression, which could adversely affect flower
vegetative and reproductive growth, reduce the responsiveness of flowers to auxin (Lohmann
et al., 2010), and impede corolla growth. Decreased SKP1 gene expression would also hinder
embryo formation and late embryonic development (Liu et al., 2004). These results suggest that
emasculation affects flower development and adversely affects embryo development. These
effects may be important contributors to low seed set rates after artificial hybridization.

Lipoxygenase gene expression was induced by emasculation. Lipoxygenase responds
to mechanical damage to cells, and it functions in insect resistance and cell ageing (Coffa et al.,
2005). Emasculation also upregulates the expression of genes related to antimicrobial, antiviral
and antioxidant responses in flower organs. Such changes in gene expression could increase
the ability of floral organs to resist damage caused by emasculation, but they may also promote
premature ageing.
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The expression of proteins involved in growth regulation and signal transduction was
affected by emasculation. The expression of a cohesion complex protein was reduced, which could
severely suppress cellular protein transport functions (Owen et al., 2004; Kelly et al., 2008). BT
protein expression was inhibited, thereby reducing the responsiveness of flower organs to auxin.
Based on the functions of TDF homologs we identified from black locust, RNA transport from the
nucleus to the cytoplasm, the ability to regulate cellular osmotic pressure, epidermal growth factor
receptor signal transduction, and cellular pH regulation would be inhibited by emasculation. These
results suggest that the effects of emasculation are detrimental to normal flower development.

Black locust flowers can resist the stress of damage caused by emasculation through
reinforcement of a subset of physiological functions. Emasculation promoted the expression of a plant
microtubule-binding protein that plays a guiding role in the synthesis of cortical microtubules and the
growth of some organs (Yao et al., 2008). The expression of the NAC transcription factor increases
in Arabidopsis flowers treated with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid
(ACC) or abscisic acid, suggesting that NAC may be associated with flower senescence (De Oliveira
et al., 2011). We showed that emasculation increased NAC transcription factor expression in black
locust flowers, which indicates that emasculation likely promotes flower senescence.

Our analysis showed that emasculation influences sugar metabolism, protein metabolism,
lipid metabolism, energy metabolism, substance transport, resistance signal transduction, osmotic
adjustment, pH adjustment, photosynthesis, and other physiological process in flowers. These
effects may be important contributors to the premature dropping of emasculated flowers, and
they may lead to low seed set rates after artificial hybridization. We also showed that, in addition
to negative impacts on flowers, emasculation could also promote some metabolic and signaling
processes that enhance the capacity of flowers to resist damage caused by stress.

We sequenced 73 TDFs, including 15 of unknown function. In addition, 17 of the sequenced
TDFs had no homologous entries in GenBank that were identifiable using BLASTx and BLASTn
searches, indicating that the functions of many genes related to black locust flower emasculation
remain unknown. If the functions of these fragments can be clarified in future studies, additional
mechanisms of emasculation that affect flower development and seed set rates will be revealed.
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