Differential expression of microRNAs may
regulate pollen development in Brassica
oleracea
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ABSTRACT. MicroRNAs (miRNAs) are a class of non-coding endogenous
negative regulators that regulate gene expression at both the transcriptional
and post-transcriptional levels. However, little is known about the expression
characteristics of miRNAs during pollen development in Brassica oleracea.
In this study, five known and three novel miRNAs were identified and their
expression patterns were compared in the flower buds of B. oleracea using
stem-loop reverse transcription polymerase chain reaction (RT-PCR) and
quantitative real-time PCR. The results revealed that the eight miRNAs
were constantly expressed during pollen development but exhibited
different expression patterns during the five developmental stages of
the flower buds between the cytoplasmic male sterile (CMS) line and
its fertile maintainer. The highest miRNA expression levels occurred at
the uninucleate microspore stage in the fertile line Bo07-12B and at the
bicellular pollen stage in the CMS line Bo017-12A. Potential target genes for
the miRNAs were predicted and analyzed, and suggested that miRNAs are
involved in the regulation of target genes related to pollen development.
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The results of this study further our understanding of the regulatory role of
miRNAs in pollen development.
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INTRODUCTION

MicroRNAs (miRNAs) are 21-24-nucleotide regulatory non-coding RNAs that play critical
roles in transcriptional and post-transcriptional gene regulation in animal and plant life processes.
Plant miRNAs are essential for plant growth and development, including organ morphogenesis,
phase change, fruit development, and defense against biotic and abiotic stress (Chen, 2009;
Kumar, 2014). Hundreds of plant miRNAs and their targets that regulate plant development have
been identified by experimental or computational approaches (Alves et al., 2009; Han et al., 2014;
Liu et al., 2014b; Zhang and Wang, 2015). Most of them are deeply conserved in plants, but
many have been found to be tissue-specific, stage-specific, or genotype-dependent (Oh et al.,
2008; Zhang et al., 2012; Sun et al., 2014). Some stage-specific miRNAs have been isolated and
functionally characterized with respect to their roles in the reproductive biology of Arabidopsis,
soybean, and other plant species (Zhan and Lukens, 2010; Shamimuzzaman and Vodkin, 2012;
Wang et al., 2014). Differences in stage-specific miRNA expression patterns provide information
on their possible regulatory functions.

Pollen development is a complex process that is crucial for sexual reproduction in higher
plants. Significant progress has been made in pollen research by employing a variety of resources
and novel techniques (Jiang et al., 2014), which have provided important information regarding
the molecular mechanism of pollen development and the control of crop fertility. Recently, it has
been demonstrated that miRNAs are differentially expressed during the various periods of pollen
development, and play specific roles in regulatory function in model plants (Le Trionnaire and Twell,
2010; Wei et al., 2011). For example, miRNAs have been shown to function in mature Arabidopsis
pollen, together with some of the most important genes involved in the miRNA silencing pathway,
such as DCL1, AGO1, and RDR6 (Grant-Downton et al., 2009a). However, the diversity of miRNAs
and their potential roles in pollen development in Brassica oleracea have rarely been investigated.

B. oleracea is one of the most important commercial vegetable crops, and has been
eaten by humans for thousands years. Recently, 10 B. oleracea miRNAs were deposited in the
publicly available miRNA database (miRBase, release 21). We previously screened preferentially
expressed miRNA sequences in B. oleracea flower buds using high-throughput sequencing and
bioinformatic analysis (Yang and Song, 2014). In the present study, the expression levels of five
known and three novel miRNAs during pollen development were identified and validated using
stem-loop reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time
PCR (qPCR). The characteristics of their target genes were then analyzed in order to understand
the possible functions of these miRNAs during pollen development in B. oleracea.

MATERIAL AND METHODS
Plant materials

Cytoplasmic male sterile (CMS) line B. oleracea ‘Bo01-12A’ and its fertile maintainer line
‘Bo01-12B’ were grown in a greenhouse under standard conditions. Flower buds were classified into
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five developmental stages, depending on their longitudinal diameters and cytological observations
(Kang et al., 2014). The flower buds were collected, frozen immediately in liquid nitrogen, and
stored at -80°C for subsequent total RNA isolation. The developmental stages of the flower buds
were as follows: S1 (0-1 mm), mostly sporogenous cell to pollen mother cell stage; S2 (1-2 mm),
mostly tetrad stage; S3 (2-3.5 mm), mostly uninucleate microspore stage; S4 (3.5-5 mm), mostly
bicellular pollen stage; S5 (>5 mm), mostly tricellular pollen stage to mature pollen grain stage.

miRNA primer design

The mature miRNA sequences were acquired by deep sequencing. In the present study,
eight miRNAs were selected because of their significantly preferential expression in the flower
buds, and included five known miRNAs (bol-miR157a, bol-miR171a, bol-miR172, bol-miR824,
and bol-miR398a-3p) and three novel miRNAs (bol-miR0023, bol-miR0101, and bol-miR0142).
Primers for reverse transcription and gPCR are listed in Table 1. Stem-loop primers were designed
according to the method described by Kramer (2011). The reverse primer for miRNA gqPCR is a
universal one, but the forward primers were designed according to the miRNA sequences.

Total RNA isolation and cDNA synthesis

Total RNA was extracted from each sample using TRIzol reagent (Takara, Japan)
according to the manufacturer instructions. RNA concentration and purity were checked using a
NanoDrop™ 1000 spectrophotometer (Thermo Scientific). First-strand cDNA was synthesized using
a PrimeScript™ RT reagent kit (Takara) according to the manufacturer instructions. To increase
reverse-transcription efficiency, a pulsed RT reaction was used (42°C for 15 min, followed by a final
reverse-transcriptase inactivation at 85°C for 5 s and reservation at 4°C).

Qualitative analysis

Stem-loop RT-PCR was conducted for qualitative expression analysis. As an internal
control and to exclude genomic contamination, glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) was amplified from the same cDNA samples. Stem-loop RT-PCR was conducted using
an Applied Biosystems 9700 Thermal Cycler. The 25-pL reaction mixture consisted of 2.5 pL 10X
PCR buffer, 0.5 yL 0.25 mM dNTP mixture, 0.5 uL forward primer, 0.5 uL reverse primer, 0.2 L
Taq DNA polymerase (Takara), and 0.8 pL template cDNA. Amplifications were performed with
the following cycle conditions: 94°C for 3 min, 94°C for 30 s, 63°C for 30 s, 30 cycles at 72°C for
30 s, and 72°C for 1 min. The PCR products were checked and visualized by 2% agarose gel
electrophoresis with ethidium bromide staining.

gPCR assay

The expression levels of the checked miRNAs were examined by gPCR. Total RNA was
prepared from flower buds at different developmental stages and converted to cDNA using a
PrimeScript™ RT reagent kit (Takara). Three replicates were included. The gPCR was performed
using a SYBR® Premix Ex Taq |l kit (Takara) on a CFX96™ Real-Time System (Bio-Rad, USA). The
25-uL PCR mixture contained 2.0 yL cDNA templates, 12.5 yL 2X SYBR® Premix Ex Taq ll, 1.0 uL
forward primer, 1.0 uL reverse primer, and 8.5 uL ddH,O. The reaction mixtures were incubated at

Genetics and Molecular Research 14 (4): 15024-15034 (2015) ©FUNPEC-RP www.funpecrp.com.br



Expression patterns of miRNAs in cabbage pollen 15027

95°C for 30 s, followed by 40 cycles at 95°C for 5 s and 60°C for 30 s. GAPDH was the only internal
control. Results were viewed using CFX Manager software (Bio-Rad) and exported to Microsoft Excel.
The 224¢t method was used to analyze the relative transcript levels (Livak and Schmittgen, 2001).

Prediction of miRNA target genes

The targets of the identified miRNAs were predicted using the online software
psRNATarget (http://plantgrn.noble.org/psRNATarget/) with the default parameters set (Dai
and Zhao, 2011). Because B. oleracea genome information was unavailable, we used the
Arabidopsis Gene Index for the target search. A BLASTx (http://blast.ncbi.nim.nih.gov/blast/Blast.
cgi?PROGRAM=blastx&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome) search against the
National Center for Biotechnology Information protein database (http://www.ncbi.nlm.nih.gov/
protein/) was performed to predict the functions of the potential targets.

RESULTS
Identification of miRNAs during B. oleracea pollen development

Using the total RNA from flower buds at each developmental stage of the two types of plant
as a template, a PCR was conducted with the primers listed in Table 1. The resulting amplicons
were of the predicted length (~80 bp; Figure 1). All eight miRNAs, including bol-miR157a, 171a,
172, 824, 398a-3p, and novel bol-miR0023, 0101, and 0142 were detected at all five developmental
stages in both the CMS line ‘Bo01-12A’ and its fertile maintainer line ‘Bo07-12B’. This indicated that
these miRNAs were constantly expressed during pollen development in B. oleracea.

Table 1. miRNAs and primer sequences used for reverse transcription polymerase chain reaction and quantitative
polymerase chain reaction analysis in Brassica oleracea.

miRNA Mature sequence Stem-loop primer Forward primer
bol-miR157a UUGACAGAAGA- GTCGTATCCAGTGCAGGGTCCGAGG ACACTCCAGCTGGG-
UAGAGAGCAC TATTCGCACTGGATACGACGTGCTC TTGACAGAAGATAG
bol-miR171a UUGAGCCGUGC- GTCGTATCCAGTGCAGGGTCCGAGG AGGCTCAGCTGTTG-
CAAUAUCACG TATTCGCACTGGATACGACCGTGAT AGCCGTGCCAAT
bol-miR172 AGAAUCUUGAU- GTCGTATCCAGTGCAGGGTCCGAGG CGCCGTCCAGCTGG-
GAUGCUGCAU TATTCGCACTGGATACGACATGCAG AGAATCTTGATGATG
bol-miR398a-3p UGUGUUCUCAG- GTCGTATCCAGTGCAGGGTCCGAGG ACCGTCCAGCTGGT-
GUCACCCCUU TATTCGCACTGGATACGACAAGGGG GTGTTCTCAGGTCA
bol-miR824 UAGACCAUUUG- GTCGTATCCAGTGCAGGGTCCGAGG ACCGTCCAGCTGGT-
UGAGAAGGGA TATTCGCACTGGATACGACTCCCTT AGACCATTTGTGAG
bol-miR0023 GCAAGTTGACT- GTCGTATCCAGTGCAGGGTCCGAGG GTCTCCAGCTGGGC-
TTGGCTCTGT TATTCGCACTGGATACGACACAGAG AAGTTGACTTTGG
bol-miR0101 CTTGACTAGGA- GTCGTATCCAGTGCAGGGTCCGAGG TCCAGCTGGCTTG-
GTCTGAGGCTT TATTCGCACTGGATACGACAAGCCT ACTAGGACGGTCTG
bol-miR0142 CCTTCTCATCG- GTCGTATCCAGTGCAGGGTCCGAGG AGGCTCAGCTGCC-
ATGGTCTAGA TATTCGCACTGGATACGACTCTAGA TTCTCATCGATGG

Universal reverse primer, GGTCCGAGGTATTCGCACTGGATAC. All sequences are written in 5'-3".

miRNA expression patterns at different developmental stages

To further characterize and validate the possible regulation of miRNAs at different stages
of pollen development, gPCR was performed using a standard SYBR® PCR protocol with the
identified mMiRNAs. The expression levels of the five known and three novel miRNAs at five critical
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developmental stages were analyzed between ‘Bo07-12A’ and ‘Bo0171-12B’, and the temporal
expression profiles of bol-miR157a, 171a, 172, 824, and 398a-3p, and novel bol-miR0023, 0101,
and 0142 are shown in Figure 2.

Bol1-12A BaD1-128
Figure 1. Reverse transcription polymerase chain reaction analysis of miRNA expression at different stages of pollen
development in Brassica oleracea. Lane 1, sporogenous cell to pollen mother cell stage; lane 2, tetrad stage; lane
3, uninucleate microspore stage; lane 4, bicellular pollen stage; lane 5, tricellular pollen stage to mature pollen grain
stage; Bo01-12A, cytoplasmic male sterile line; Bo01-12B, fertile maintainer line; lane M, 500-bp DNA Ladder.

bol-miR157a expression in the CMS line ‘Bo017-12A’ increased from stages 1 to 4 before
significantly decreasing at stage 5; however, in ‘Bo071-12B’, it slightly decreased at first, then
increased from stages 1 to 3, before decreasing again at stage 4 (Figure 2A). There were no
obvious trends in bol-miR171a expression in either line; the highest bol-miR171a expression level
was at stage 4 in ‘Bo071-12A’ and at stage 3 in ‘Bo017-12B’ (Figure 2B). bol-miR172 expression levels
were similar from stages 1 to 3 in both lines. However, it increased rapidly at stage 4 and stabilized
at stage 5 in the CMS line ‘Bo071-12A’, whereas it decreased sharply at stage 4 and stabilized at
stage 5 in the fertile line ‘Bo071-12B’ (Figure 2C). The expression levels of bol-miR398a-3p were
lower in ‘Bo01-12A’ than in ‘Bo01-12B’ at stages 1 and 3, but higher in the CMS line at stages
2, 4, and 5, with a significant difference at stages 4 and 5 (Figure 2D). During stages 1 to 3, the
expression levels of bol-miR824 in ‘Bo071-12B’ were always higher than those in ‘Bo071-12A’, and
the same expression trends were maintained in both lines; subsequently, they were higher in the
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CMS line than in the fertile line at stages 4 and 5, and the same expression levels were maintained
in each line (Figure 2E).

The expression levels of novel bol-miR0023, 0101, and 0142 were higher in the CMS line
than in the fertile maintainer line, except at stage 3 (Figure 2F-H). The highest expression levels of
the eight miRNAs all occurred at stage 4 in the CMS line and at stage 3 in the fertile maintainer line.
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Figure 2. Quantitative polymerase chain reaction analysis of miRNA expression at different stages of pollen
development in cytoplasmic male sterile and fertile maintainer lines of Brassica oleracea.

Potential targets of the miRNAs during pollen development

To understand the functions of the eight miRNAs, their potential target sites were predicted
using psRNATarget: 92 target genes were predicted (Table 2). Although information regarding the target
proteins was unavailable for the partial miRNAs, target protein identity was available for most of the
known miRNAs, except for bol-miR398a-3p. The targets of the five known miRNAs encode special
proteins that are associated with the stress response, transcription factors regulating gene expression,
and enzymes relevant to metabolic and signaling pathways that are involved in pollen development.
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DISCUSSION

The expression information of any molecules, including miRNAs, at specific developmental
stages as well as in specific tissues is of great significance for understanding their functions (Feng
et al., 2014). Stem-loop RT-PCR is a method that exhibits high sensitivity and specificity for
detecting miRNAs in animals and plants (Chen et al., 2005; Varkonyi-Gasic et al., 2007). In this
study, qualitative RT-PCR with a stem-loop primer was performed to detect the presence of three
novel and five known miRNAs during pollen development in CMS and fertile lines. All eight miRNAs
were detectable at all five stages of pollen development. Previous reports have indicated that many
miRNAs exist in pollen and may regulate pollen and anther development (Chambers and Shuai,
2009). For example, miR157, miR171, miR172, and miR824 were identified in mature Arabidopsis
pollen using 454 sequencing and a miRCURY array (Chambers and Shuai, 2009; Grant-Downton
et al.,, 2009b). miR171a and miR398 have been detected in male loblolly pine (Pinus taeda)
gametophytes and rice pollen, respectively, by microarray analysis (Wei et al., 2011; Quinn et al.,
2014). miR172b expression has been detected in the flower buds of Brassica campestris (Jiang et
al., 2013). Therefore, the results of this and previous studies suggest that miRNAs are constantly
expressed during pollen development.

A growing body of evidence suggests that miRNAs are an essential regulatory component of
plants (Liu et al., 2014a). In order to quantify changes in miRNA expression during pollen development,
we performed a gPCR-based assay that allowed us to detect miRNAs at low abundance and acquire
precise data on relative miRNA expression levels. The eight miRNAs tested exhibited differential
expression patterns during the five typical stages of pollen development between CMS and fertile
lines. Recent studies have indicated that small-RNA pathways interfere with microgametogenesis,
from mononuclear microspores to the tricellular pollen state, in Arabidopsis (Honys and Twell, 2004;
Pina et al., 2005). Interestingly, we found that a transition in miRNA expression levels occurred at the
uninucleate and bicellular microspore stages in fertile and CMS lines, respectively, of B. oleracea.
Furthermore, each of the tested miRNAs tended to be sharply downregulated at the later stages of
microspore development in the fertile line. Similarly, previous research has shown that most miRNAs
are expressed at a very low abundance in mature Arabidopsis pollen (Chambers and Shuai, 2009).
Therefore, the differential miRNA expression between the CMS and fertile lines might contribute to
regulating pollen development and male sterility.

The identification of miRNA target genes is an important step in understanding miRNA
regulation during plant development. To elucidate the functions of the miRNAs that were
differentially expressed during pollen development in B. oleracea, we predicted their putative target
genes. Since most plant miRNAs exhibit perfect or near-perfect complementarities with their target
mRNAs, and B. oleracea and Arabidopsis have nucleotide sequence identities of 80-90% (Amagai
et al., 2003), potential target genes could easily be predicted using computational and homolog
search methods. Many of the known targets encode transcription factors, which play an important
role in plant growth and development (Jones-Rhoades and Bartel, 2004; Earley et al., 2010). For
example, bol-miR157 targets the transcription factor SBP, which might participate in gametophyte
development (Xing et al., 2010). bol-miR172 targets AP2-like transcription factors, which have
been implicated in the regulation of flowering time and floral organ identity in Arabidopsis, maize,
tobacco, and the opium poppy (Aukerman and Sakai, 2003; Chen, 2004; Frazier et al., 2010; Unver
et al., 2010). Many miRNAs are evolutionarily conserved across a variety of plant species, and
function in the regulatory control of fundamentally important biological processes (Xie et al., 2010).
Itis well known that MYB transcription factors are a superfamily of proteins that play regulatory roles
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in developmental processes and defense responses (Chen et al., 2006). The results of the present
study suggest that MYB proteins may be one of the targets of bol-miR172a, and that miRNAs may
be involved in the important functional regulation of pollen development in B. oleracea.

In summary, this study identified differential miRNA expression between CMS and fertile
lines of B. oleracea during pollen development. The potential target gene predictions for the
miRNAs further demonstrated that the expressional patterns of these miRNAs could modulate
pollen developmental processes. These results strongly suggest that these miRNAs are constantly
expressed and temporally regulate non-coding small RNA that is involved in B. oleracea pollen
development. Further studies are needed to elucidate the specific roles of miRNAs in pollen
development, in order to provide a better understanding of the regulatory mechanisms of pollen
development at the miRNA level.
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