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ABSTRACT. Compared to other placental mammals, humans have unique 
thinking and cognitive abilities because of their developed cerebral cortex 
composed of billions of neurons and synaptic connections. As the primary 
effectors of the mechanisms of life, proteins and their interactions form the 
basis of cellular and molecular functions in the living body. In this paper, we 
developed a pipeline for mining topological structures, identifying functional 
modules, and analyzing their functions from publically available datasets. A 
human brain-specific protein-protein interaction network with 1482 nodes 
and 3105 edges was built using a MapReduce based shortest path algorithm. 
Within this, 7 functional cliques were identified using a network clustering 
method, 98 hub proteins were obtained by the calculation of betweenness 
and connectivity, and 5 closest relationship to clique connector proteins 
were recognized by the combination scores of topological distance and 
gene ontology similarity. Furthermore, we discovered functional modules 
interacting with TP53 protein, which involves several fragmented research 
study conclusions and might be an important clue for further in vivo or in 
silico experiments to confirm these associations.
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INTRODUCTION

During the process of gene expression in the human brain, from transcription to translation, 
any critical change will lead to a change in the physiology and behavior of a neuron. Numerous 
research efforts have attempted to disclose the working mechanisms of the brain both from the 
viewpoint of physiological structure using imaging technologies (Amunts et al., 2014; Di Martino et 
al., 2014) and that of gene expression using genome-wide association studies (Hernandez et al., 
2012; Medland et al., 2014).

System biology and biological interaction networks have led to new paradigms in these 
analyses. The discovery of the key changes in genes or proteins that regulate the responses of the 
brain to external stimuli or lead to neuropsychiatric disorders can accelerate the pace of gene and 
drug treatments. Protein interaction is crucial for building the networks in the brain that underlie 
these phenomena (Amunts et al., 2014). Neural networks are formed by the interconnection of 
specific neurons in the brain. The molecular mechanisms involved in creating these connections, 
however, are poorly understood (Zilles and Amunts, 2013).

In this paper, we developed a pipeline for mining topological structures, identifying 
functional modules, and analyzing their functions. A human brain-specific protein-protein interaction 
network (PPIN) with 1482 nodes and 3105 edges was built using a MapReduce-based shortest 
path algorithm. Within this, 7 functional modules were identified using the molecular complex 
detection (Mcode) algorithm (Bader and Hogue, 2003), 98 hub proteins were obtained by the 
calculation of betweenness and connectivity, and 5 closest relationship to clique connector (CRCC) 
proteins were recognized by the combination of scores of topological distance and gene ontology 
(GO) similarity. Furthermore, we discovered functional modules interacting with the TP53 protein, 
which involves several fragmented research study conclusions, and might be an import clue for 
further in vivo or in silico experiments to confirm or build upon these associations.

MATERIAL AND METHODS

PPI network construction for human brain-specific genes

Gene expression datasets such as those from the Genomics Institute of the Novartis 
Research Foundation, serial analysis of gene expression, and expressed sequence tags are 
very widely used as data sources for classifying housekeeping (HK) and tissue-specific (TS) 
genes. For a given gene, applying predefined thresholds of its expression levels usually allows 
its identification as HK or TS. However, because of the noise contained in expression datasets 
and human involvement in defining the thresholds, the reliability of the identifications is often not 
high. In this paper, we attempted to rectify this problem by obtaining brain-specific genes from two 
sources: scientific publications from PubMed and known tissue-specific databases such as TisGeD 
(Xiao et al., 2010) and TiGER (Liu et al., 2008). From this, we finally obtained a total of 56 brain 
tissue-specific genes.

Tissue-specific genes generally exhibit high expression in the corresponding tissue 
of living organisms. The external environment, which is primarily reflected in the transcription 
and expression of non-specific-tissue genes, exerts a considerable influence in the process of 
biological regulation. Proteins encoded by tissue-specific genes are instead greatly influenced 
by their associated proteins. To examine these for the brain, we developed a MapReduce-
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based Dijkstra shortest path algorithm (cloudSPA) to extract associated proteins from the whole 
human PPI data repository (http://string-db.org/), and then constructed a highly-associated 
PPIN.

A PPIN can be represented as an undirected weighted graph. Nodes represent proteins, 
edges denote interactions between proteins, and weights indicate the tightness of such interactions. 
To construct the brain-specific PPIN, firstly, we constructed a PPIN G0≤ N0, E0, W0 >, in which N0 
represented the tissue specific protein set, E0 was the interaction set of proteins in N0, and W0 was 
the associated strength set of interactions in E0.

Secondly, on the basis of the G0, the full human PPI was partitioned into several PPINs. 
Then, we queried the strong correlation paths between tissue-specific proteins in these networks 
using cloudSPA. All strong correlation paths were retrieved and added into G0 to construct a PPIN 
G1≤ N1, E1, W1 >, which still contained many redundancy connections. Thirdly, we discarded those 
non-shortest paths (non-strong-correlation paths) between tissue-specific proteins in G1, and 
finally constructed a PPIN G2≤ N2, E2, W2 > (tissue specific PPIN), which was a PPIN with strong 
correlations and few redundancies of data.

Identifying date hub proteins

Hub proteins and functional modules are usually regarded as two key players in a PPIN. 
Joy et al. (2005) pointed out that the hub proteins might act as important links between these 
modules. Interactions between these topological structures play an important role in maintaining 
the steady state of life systems.

A date hub represents a protein with high connectivity and low co-expression. The terms 
degree and betweenness are used to describe a date hub. For every node v in a PPIN, degree 
centrality (DC) is defined as in Equation 1:

(Equation 1)

where deg(v) = {e| e∈E ⋀v∈V} is the number of links for node v.
Betweenness assesses the number of shortest paths passing through a given node. The 

concept derives from the analysis of social networks. A node with high betweenness centrality is 
more likely to be located on the shortest paths between multiple node pairs in the network and 
therefore more information should be passed through it. This means that betweenness centrality 
will easily lead to congestion and be more likely to become the bottleneck of a network. For every 
node v, betweenness centrality is defined as in Equation 2:

(Equation 2)

where σ(s, t) is the number of shortest paths from s to t; and σ(s, t│ v) is the number of shortest 
paths passing through v from s to t.
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Essential genes are those indispensable for the survival of an organism, and their functions 
are therefore considered a foundation of life. Date hub proteins are identified by the proportion of 
proteins encoded by essential genes.

Proteins in a PPIN are divided into four groups: high betweenness, high connectivity; low 
betweenness, high connectivity; high betweenness, low connectivity, and low betweenness; low 
connectivity.

Here, we used a threshold α to describe whether a protein was high connectivity and low 
co-expression (high betweenness). The best α is chosen when the proportion of proteins encoded 
by essential genes is the largest, as shown in Figure 1.

Figure 1. Identification of date hub proteins. The y-axis represents the proportion of proteins encoded by essential 
genes and the x-axis reflects the threshold, when α = 0.12, that the proportion of proteins encoded by essential genes 
is the largest. HBHC, high betweenness, high connectivity; LBHC, low betweenness, high connectivity; HBLC, high 
betweenness, low connectivity; LBLC, low betweenness, low connectivity.

Mining functional modules

Functional modules consist of proteins that participate in a particular cellular process while 
binding each other at different times and places (Schwikowski et al., 2000; Spirin and Mirny, 2003). 
Proteins inside a module have strong functional relevance. Cellular functions, such as signal 
transmission, are carried out by “modules” made up of many species of interacting molecules 
(Hartwell et al., 1999). Identifying functional modules is similar to detecting communities (clusters) 
in a network. To date, there are many clustering algorithms developed to find such groups; for 
instance, Mcode (Bader and Hogue, 2003), highly connected subgraph (Hartuv and Shamir, 1999), 
and restricted neighborhood search clustering (King et al., 2004). We performed the clustering 
analysis using above methods, and carried out functional enrichment analysis on the results. Only 
the results that were generated using the Mcode algorithm demonstrated rich GO sets. Thus, we 
adopted the Mcode algorithm to identify the functional modules in the PPIN.
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Identification of CRCC proteins

Date hubs are considered to connect different modules. To obtain a better understanding 
of the biological function of date hub proteins as key connectors in the PPIN, we combined the 
topological distance and the GO similarity to measure the relationships as shown in Equation 3:

(Equation 3)

where TDS(V, C) is the score of topological distance, indicating the shortest distance from the 
date hub to its corresponding modules. GSS(V, C) is the score of GO similarity. AvgTDS(C) and 
AvgGSS(C) are the average topological and average GO similarity scores, respectively.

RESULTS

PPIN of human brain-specific genes

The final PPIN of human brain-specific genes is shown in Figure 2. It consists of 1482 
nodes and 3105 edges. The features of its topological properties are shown in Table 1. From the 
table, we can observe that the PPIN follows the law of a small-world network (Telesford et al., 
2011). The values of path length, centralization, and density indicate that the whole network is 
quite sparse.

Figure 2. PPIN of human brain-specific genes.



12442W.J. Cui et al.

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (4): 12437-12445 (2015)

Functional modules

A total of 7 functional modules were identified (Table 2). We performed functional 
enrichment analysis on those clusters, and all of them matched rich GO terms. For example, the 
functions of cluster 1 primarily included metabolic processes such as the Wnt signaling pathway, 
TGF-β signaling pathway, and ubiquitin mediated proteolysis. Functions of cluster 2 primarily 
consisted of responses to external stimulation including the B cell receptor, Toll-like receptor, and 
T cell receptor signaling pathways. Cluster 3 was found to mainly regulate biological processes; its 
functions included the gonadotropin-releasing hormone (GnRH) signaling pathway and the calcium 
signaling pathway. The function of cluster 4 was the regulation of cell protein metabolism. Cluster 
5 played a significant role in immune response and immune regulation. The functions of cluster 
6 primarily included RNA splicing, nuclear mRNA splicing via spliceosomes, and RNA splicing 
via transesterification reactions. The functions of cluster 7 mainly included certain fundamental 
cellular functions such as forebrain development, lymphocyte activation, adherent junctions, focal 
adhesion, synaptic transmission, and positive regulation of cell communication.

Simple parameters	 Value	 Simple parameters	 Value

Clustering coefficient	 0.108	 Number of nodes	 1482
Connected components	 1	 Network density	 0.003
Network diameter	 11	 Network heterogeneity	 1.654
Network radius	 6	 Number of edges	 3105
Network centralization	 0.131	 Number of self-loops	 0
Characteristic path length	 4.390	 Avg. number of neighbors	 4.192

PPIN = protein-protein interaction network.

Table 1. Topological properties of the PPIN.

	 Protein nodes	 Genes

Cluster 1	 ENSP00000251547, ENSP00000216225,	 FBXO44, RBX1, FBXL3, FBXL5, FBXL15, CCNF, FBXW7, CUL1, FBXW11, FBXO25
	 ENSP00000347834, ENSP00000344866, 
	 ENSP00000224862, ENSP00000380256, 
	 ENSP00000281708, ENSP00000326804, 
	 ENSP00000265094, ENSP00000276326
Cluster 2	 ENSP00000274335, ENSP00000335657, 	 PIK3R1, CCK, FOS, TRH, PIK3CA
	 ENSP00000306245, ENSP00000303452, 
	 ENSP00000263967
Cluster 3	 ENSP00000286355, ENSP00000311405, 	 ADCY8, ADCY6, GNAL, TCF19
	 ENSP00000334051, ENSP00000401548
Cluster 4	 ENSP00000351885, ENSP00000280892, 	 PPP2R4, EIF4E, C11orf68
	 ENSP00000398350
Cluster 5	 ENSP00000258743, ENSP00000402956, 	 IL6, HLA-B, ICAM1
	 ENSP00000264832
Cluster 6	 ENSP00000361162, ENSP00000318861, 	 TOE1, SF3B2, RBM8A
	 ENSP00000333001
Cluster 7	 ENSP00000344456, ENSP00000344818, 	 CTNNB1, UBC, FYN
	 ENSP00000357656

Table 2. Identification of seven functional modules.

CRCC proteins

We also identified 5 CRCC proteins, as shown in Table 3. Among these, we discovered 
an interesting connection with TP53 proteins, which connect several fragmented research study 
conclusions (Figure 3).
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The protein encoded by TP53 (p53) acts as a tumor suppressor. The nuclear accumulation 
and transcriptional activity of β-catenin has been shown to be modulated by p53, and the inhibition 
of p53 expression can promote nuclear accumulation and the transcriptional activity of β-catenin 
which affects the epithelial-mesenchymal transition (EMT) (Wang et al., 2013). Activation of p53 
accelerates the degradation of β-catenin and then inhibits the Wnt signaling pathway (Zheng and 
Xu, 2009). In turn, the Wnt signaling pathway induces EMT through inhibiting the degradation 
of β-catenin in the cytoplasm as well as phosphorylation mediated by glycogen synthase kinase 
(Gsk3β) (Giles et al., 2003). As mentioned previously, functions of cluster 1 include the Wnt 
signaling pathway and functions of cluster 7 include some fundamental cellular functions such as 
adherent junctions that are related to EMT. Obviously, the expression of TP53 affects the content 
of β-catenin and further regulates these two functional modules.

Along the same lines, the CCNB1 gene encodes a cell cycle protein. Cluster 6 plays a role 
in transcription and cluster 7 primarily comprises some basic cellular functions such as cell cycle 
progression, gene expression regulation and transcriptional regulation. Thus, CCNB1 is clearly 
closely related to these two modules.

The protein encoded by SMAD4 can serve as a tumor suppressor. SMAD directly 
participates in signal transduction of the TGF-β superfamily and is an important mediator of 
TGF-β superfamily members for their participation in life activities (Li et al., 2011). TAK1 was 
originally identified as a mitogen-activated protein kinase kinase kinase (MAP3K) activated by 
TGF-β (Yamaguchi et al., 1995) and was characterized as a central player in multiple immune and 
inflammatory signaling pathways including cytokine receptors, Toll-like receptor, T-cell receptor, 

Figure 3. Regulatory effects of TP53 between cluster 1 and cluster 7. Different color arrows represent different 
conclusions (1-3) proposed in different papers as cited. Gray represents the function of the clusters. Blue indicates 
the hub protein.

CRCC (protein ID)	 Gene	 1st partner (ProS score)	 2nd partner (ProS score)

ENSP00000269305	 TP53	 Cluster 1 (0.3227)	 Cluster 7 (0.144205)
ENSP00000341551	 SMAD4	 Cluster 2 (0.471616)	 Cluster 7 (0.122718)
ENSP00000251453	 RPS16	 Cluster 2 (0.948999)	 Cluster 3 (0.840729)
ENSP00000256442	 CCNB1	 Cluster 6 (0.408316)	 Cluster 7 (0.134237)
ENSP00000332643	 NDN	 Cluster 3 (0.550684)	 Cluster 7 (0.247597)

Table 3. Relationships between the CRCC protein and its two closest partner groups.
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and B-cell receptor-mediated signaling (Sato et al., 2005; Schuman et al., 2009; Shinohara and 
Kurosaki, 2009; Chen, 2012; Sakurai, 2012) (cluster 2). On the other hand, research by Scheel 
et al. (2011) shows that TGF-β is able to induce EMT, which is closely related to the function of 
adherent junctions and focal adhesion (cluster 7).

NDN is an imprinted gene and one of the many actions of Nhlh2 might be through necdin, 
a downstream target of Nhlh2 that was shown to augment GnRH gene transcription by interrupting 
Msx repression (Miller et al., 2009) (cluster 3). There are no obvious research results that illustrate 
the relationship between NDN and cluster 7. However, cluster 7 mainly comprises some basic 
cellular functions and many functions of NDN are inseparable from synaptic transmission, the 
positive regulation of cell communication, and cell mobility (cluster 7).

The RPS16 gene encodes a ribosomal protein that is the main component of the ribosome, 
which is essential in protein biosynthesis. Although we were unable to identify evidence to verify 
the relationship between RPS16 and its corresponding clusters, we might predict that it plays a role 
in the response to external stimuli and regulation of cell biological processes.

DISCUSSION

Hub proteins act as important links between functional modules. We can both verify 
some relevant published conclusions and predict some as-yet unknown biological processes. 
Meanwhile, some relevant conclusions can be integrated to describe a complete biological process 
that is significant for understanding PPIN robustness and integrity. With the rapid development of 
science and technology, increasing numbers of biological experiments can be completed efficiently. 
If conclusions in these papers cannot be efficiently utilized and incorporated, that would be a 
great loss. Therefore, the question of how to integrate them remains a challenging problem. Our 
discovery might provide a clue to achieving this goal.

On the other hand, we note that the results of the enrichment analysis focus primarily on 
basic functions and rarely contain brain tissue-specific functions. One reason for this might be that 
the majority of brain function modules play a role in basic biological processes. Another reason could 
be the small set of data currently known to be related because we are not very certain regarding the 
mechanisms of cognition and thinking, and we intend to examine this issue further in future studies.
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