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ABSTRACT. Camellia oleifera is an important edible oil woody
plant in China. Lack of useful molecular markers hinders current
genetic research on this tree species. Transcriptome sequencing of
developing C. oleifera seeds generated 69,798 unigenes. A total of
6949 putative microsatellites were discovered among 6042 SSR-
containing unigenes. Then, 150 simple sequence repeats (SSRs) were
evaluated in 20 varieties of C. oleifera. Of these, 52 SSRs revealed
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polymorphism, with the number of alleles per locus ranging from 2
to 15 and expected heterozygosity values from 0.269 to 0.888. The
polymorphic information content varied from 0.32 to 0.897. Cross-
species transferability rates in Camellia chekangoleosa and Camellia
japonica were 90.4 and 78.8%, respectively. The 52 polymorphic
unigene-derived SSR markers serve to enrich existing microsatellite
marker resources for C. oleifera and offer potential for applications
in genetic diversity evaluation, molecular fingerprinting, and genetic
mapping in C. oleifera, C. chekangoleosa, and C. japonica.

Key words: Camellia oleifera; C. chekangoleosa; C. japonica; Unigene;
Microsatellite; Cross-species transferability

INTRODUCTION

The woody plant Camellia oleifera, a member of the Theaceae family, is economi-
cally important for the production of tea oil in China. Tea oil, extracted from the seeds, is
considered a high-quality edible oil and is also called ““eastern olive oil”’ because its com-
position is highly similar to that of olive oil (Ma et al., 2011). Oil-tea trees include more
than ten species, of which C. oleifera is the dominant species in tea oil production, being the
most widely distributed and planted in China and producing the highest yields. A number
of authorized elite varieties have so far been released for tea oil production. However, more
new varieties with novel traits, such as high quality, multipurpose use, and biotic and abiotic
stress resistance, are required for commercial plantations. Understanding the genetic diver-
sity and relatedness among germplasm resources is useful for breeding and clonal improve-
ments. Microsatellite markers, also called simple sequence repeat (SSR) markers, are pow-
erful tools for genetic diversity evaluation, molecular fingerprinting, and genetic mapping.
In the past few years, transcriptome sequencing technology has developed to offer a fast,
cost-effective, and reliable approach to the generation of large expression-data sets, in both
model and non-model plants with large, complex genomes (Marioni et al., 2008; Mortazavi
et al., 2008; Nagalakshmi et al., 2008). In addition, this technology provides an opportunity
to identify and develop unigene-derived microsatellite markers (Gupta and Gopalakrishna,
2010; Dutta et al., 2011; Zhang et al., 2012). These new markers are considered superior to
genomic SSR markers because they potentially code for functional proteins and can increase
the efficiency of marker-assisted selection.

Recently, microsatellites have been analyzed and developed in Camellia
chekangoleosa, an allied species of C. oleifera also used for tea oil production (Wen et al.,
2012; Shi et al., 2013). C. chekangoleosa is a diploid species, whereas different ploidy levels
occur in C. oleifera (Huang, 2013). C. oleifera-derived specific microsatellite markers have
not yet been reported, hindering genetic research efforts. In our previous study, we performed
[llumina platform-based transcriptome sequencing of developing C. oleifera seeds in order
to understand seed fatty acid metabolism (Shao, 2011). The objective of this study was to
characterize microsatellites from the transcriptome sequences and develop polymorphic
microsatellite markers in C. oleifera. These novel unigene-derived microsatellite markers will
provide a useful tool for genetic research and comparative genome analysis in C. oleifera and
allied species.
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MATERIAL AND METHODS
Plant materials

Plant materials used for validation of SSRs comprised 20 varieties of C. oleifera,
including the ‘Huashuo’ cultivar, which we utilized for complementary DNA (cDNA)
library construction and transcriptome sequencing. In addition, 18 elite germplasm clones
of C. chekangoleosa and 15 varieties of Camellia japonica were used to investigate cross-
species transferability. All plants were conserved at the Germplasm Repository of the
Jiangxi Academy of Forestry, Nanchang, China. Young leaves were collected in spring
and stored at -80°C until use.

Source of transcriptome sequences

Our laboratory, in collaboration with Beijing Genomics Institute in Shenzhen, China,
constructed a cDNA library using developing seeds of the ‘Huashuo’ cultivar at the lipid syn-
thesis initiation phase and the peak lipid synthesis phase, i.e., 180 and 300 days after flower-
ing, respectively. Detailed procedures for cDNA library construction, sequencing, and de novo
transcriptome assembly were described previously (Shao, 2011).

Detection of microsatellites and designing of SSR primers

Microsatellites were detected using the Microsatellite (MISA) tool, with param-
eters set for detection of perfect di-, tri-, tetra-, penta-, and hexanucleotide motifs with at
least six, five, five, four, and four repeats, respectively. Primer pairs were designed using
Primer Premier 5.0. The major parameters for primer design were set as follows: SSR
motifs > 20 bp, primer length from 18 to 25 nucleotides, and PCR product size from 100
to 300 bp (Table 1).

Validation of microsatellite markers

Genomic DNA was isolated from young leaves of 20 C. oleifera varieties, 18 C. chek-
angoleosa clones, and 15 C. japonica varieties using a DNA isolation kit (Tiangen Biotech,
China). Of the 20 C. oleifera varieties, three were first used to test the primers. Each PCR
was carried out in a total volume of 10 uL containing 1X buffer, 2 mM MgCl,, 0.2 mM of
each dNTPs, 0.2 uM of each primer, 0.5 U Tag DNA polymerase (Tiangen Biotech), and 10
ng DNA template. PCR was performed on a thermal cycler (ABI9700, Applied Biosystems,
USA) under the following conditions: 94°C for 5 min; 30 cycles of 30 s at 94°C, 45 s at
56°C, and 45 s at 72°C; 10 cycles of 30 s at 94°C, 45 s at 53°C, and 45 s at 72°C; and a final
extension of 5 min at 72°C. The amplified products were analyzed on 2% agarose gels. Any
loci generating products of the expected size were then assessed for polymorphisms in the 20
C. oleifera varieties, using the M13 (-21) (5'-TGTAAAACGACGGCCAGT-3") sequence-tag
method (Schuelke, 2000). Fluorescently labeled PCR products were analyzed concurrently
with the GeneScan-500 LIZ Size Standard on an ABI 3730XL sequencer, and sizes were de-
termined with GeneMapper v4.0.
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Statistical analysis

Due to the putatively polyploid character of C. oleifera, statistical analysis entailed treat-
ing the SSRs as dominant markers. The data were scored in a binary format (presence as ‘1’ and
absence as ‘0’). The binary data were used to calculate genetic parameters using PopGene v1.32.
The polymorphism information content (PIC) value for each SSR marker was calculated as
described previously (Huang, 2013; Singh et al., 2013). For C. chekangoleosa (diploid) and C.
Japonica (diploid), statistical analysis treated the SSRs as codominant markers.

RESULTS
Characterization of microsatellites in the C. oleifera unigenes

Transcriptome sequencing of developing seeds of C. oleifera produced 69,798 unige-
nes, which were used to identify microsatellites with the MISA tool. A total of 6949 putative
SSR motifs from 6042 SSR-containing unigenes were identified; that is, 9.9% of the unigenes
contained at least one of the considered microsatellites. Dinucleotide repeats were the most
common types of SSR, accounting for 64.8%, followed by trinucleotide (26.1%), hexanucleo-
tide (5%), pentanucleotide (2.6%), and tetranucleotide (1.5%) repeats (Figure 1).
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Figure 1. Distribution of different SSR unit types in Camellia oleifera.
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The most abundant SSR motif was AG/CT, followed by AAG/CTT, AT/AT, AC/GT,
ACC/GGT, ATC/ATG, AGG/CCT, AAC/GTT, and AGC/CTG (Figure 2). Among the dinucle-
otide repeats, the motif AG/CT was the most common (84.5%), followed by AT/TA (8.5%)
and AC/GT (6.9%). Among the trinucleotide repeats, the motif AAG/CTT was the most com-
mon, accounting for 30.2%, followed by ACC/GGT (16.3%) and ATC/ATG (15.5%). Other
motifs were identified in insignificant numbers.
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Figure 2. Frequency of different SSR motifs in Camellia oleifera.

&S

SIS
N

Development of C. oleifera polymorphic SSRs

One hundred and fifty primer pairs, corresponding to 150 unigene loci, were designed
for the PCR test. Initial amplification was conducted on three C. oleifera varieties with unla-
beled primers. The amplified products were analyzed using agarose gel electrophoresis. Thir-
ty-two loci generated nonspecific products and 16 loci yielded no products. The remaining 102
loci yielded products of expected size and were then assessed for polymorphism in 20 C. ole-
ifera varieties with the M13 (-21) (5'-TGTAAAACGACGGCCAGT-3') sequence-tag method.

As shown by capillary electrophoresis, PCR products appearing as one band on an
agarose gel were clearly separated into four distinct fragments by capillary electrophoresis
(Figure 3A). Based on capillary electrophoresis data, 52 loci among the C. oleifera varieties
displayed polymorphism tested (Table 1). The number of alleles (N,) per locus ranged from
2 to 15, with an average of 7.096. The expected heterozygosity (/1) value ranged from 0.32
to 0.897, with an average of 0.707. The PIC ranged from 0.498 to 0.887, with an average
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of 0.742. Of the 52 loci, 49 were high polymorphic (PIC > 0.5) and only three (CoUg3898,
CoUgl12183, and CoUg14786) were moderately polymorphic (0.25 < PIC < 0.5) (Table 2).
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The size of amplified pfoducts (bp)

Figure 3. Analysis of fluorescently labeled PCR products by capillary electrophoresis.

Cross-species transferability of the C. oleifera SSRs

Cross-amplification tests were performed in 18 elite germplasm clones of C. chekango-
leosa and 15 varieties of C. japonica, both of which are diploid species in Camellia. The SSR
markers from C. oleifera produced at most two alleles in each sample of the two species (Figure
3B and C). For C. chekangoleosa, 47 SSR markers exhibited polymorphisms and the cross-
species transferability rate was 90.4%. The N, ranged from 2 to 10, with an average of 5.319 per
locus. The H ranged from 0.056 to 0.873, with an average of 0.672. The PIC value ranged from
0.1 to 0.862, with an average of 0.67. Of the 47 markers, 42 were highly polymorphic, one was
moderately polymorphic, and four had low polymorphism (PIC < 0.25) (Table 2).

For C. japonica, 41 markers exhibited polymorphisms and the cross-species transfer-
ability rate was 78.8%. The N, ranged from 2 to 7, with an average of 4.61 per locus. The H
ranged from 0.067 to 0.86, with an average of 0.652. The PIC value ranged from 0.117 to 0.831,
with an average of 0.649. Of the 41 markers, 36 were highly polymorphic, one was moderately
polymorphic, and four had low polymorphism (Table 2). These results indicated that the 52 SSR
markers developed from C. oleifera harbored rich polymorphisms in the other Camellia plants.
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Table 2. Genetic parameters generated among Camellia oleifera and its allied species using 52 unigene-
derived SSR markers.

Unigene ID C. oleifera (N = 20) C. chekangoleosa (N = 18) C. japonica (N = 15)
N, H, H, PIC N, H, H, PIC N, H, H,  PIC

CoUg65 8  1.000 0.834 0.852 7 0.824 0.857 0.835 7 0.857 0.860  0.831
CoUg641 9 0.900 0.850 0.865 4 0.222 0.671 0.661 4 0.200 0.660  0.648
CoUg3680 6 0.611 0.657 0.702 6 0.500 0.765 0.765 6 0467 0.766  0.760
CoUg4931 10 0.684 0.870 0.882 7 0.706 0.752 0.756 6 0.643 0.725  0.707
CoUg5179 14 0.950 0.881 0.890 10 0.833 0.851 0.826 - - - -
CoUg5452 10 0.737 0.853 0.867 7 0.389 0.821 0.829 6 0333 0.816  0.800
CoUg5585 10 1.000 0.839 0.856 8 0.722 0.803 0.803 - - - -
CoUg6123 15 0.800 0.888 0.897 - - - - - - - -
CoUg7330 8 0.700 0.796 0.819 4 0.111 0.686 0.695 4 0.133 0.745  0.734
CoUg7967 6  0.650 0.768 0.798 4 0.278 0.618 0.631 30267 0.559  0.598
CoUg8529 8 0.900 0.843 0.859 8 0.941 0.863 0.837 - - - -
CoUg9308 10 0.842 0.837 0.853 6 0.412 0.733 0.747 6 0.500 0.706  0.730
CoUg10320 8 0611 0.827 0.846 5 0.333 0.684 0.719 5 0.400 0.743  0.748
CoUg11003 5 0278 0.657 0.712 5 0.177 0.786 0.775 5 0214 0.802  0.782
CoUg12783 12 0.900 0.852 0.866 7 0.444 0.829 0.825 7 0.467 0.825  0.826
CoUgl3050 3 0.067 0.559 0.539 - - - - - - - -
CoUg13386 5 0.842 0.669 0.714 4 0.333 0.722 0.691 4 0.267 0.747  0.709
CoUgl14253 8 0450 0.766 0.793 5 0.059 0.711 0.710 5 0.071 0.638  0.649
CoUg17053 7 0.500 0.761 0.791 5 0.177 0.640 0.665 4 0.143 0.564  0.602
CoUgl7210 5 0.667 0.668 0.714 7 0.222 0.833 0.826 7 0200 0.832  0.821
CoUg66187 3 0.150 0.492 0.552 6 0.529 0.763 0.754 5 0357 0.738  0.737
CoUg2348 8 0.750 0.745 0.776 6 0.000 0.775 0.753 4 0.000 0.726  0.702
CoUg3009 5 0.900 0.705 0.746 7 0.833 0.754 0.749 7 0.800 0.759  0.752
CoUg3402 7 0.850 0.623 0.678 2 0.059 0.166 0.198 - - - -
CoUg4364 11 1.000 0.859 0.872 4 0.059 0.668 0.570 4 0.071 0.664  0.658
CoUg5820 9 1.000 0.813 0.833 - - - - - - - -
CoUg9871 7 0.900 0.732 0.767 8 0.889 0.813 0.792 - - - -
CoUgl10008 9 0.900 0.780 0.801 5 0.111 0.752 0.740 5 0.067 0.738  0.719
CoUg14786 2 0.053 0.269 0.320 3 0.000 0.585 0.567 3 0.000 0.540  0.520
CoUgl15419 3 0.706 0.418 0.523 2 0.167 0.157 0.245 2 0.133 0.129  0.208
CoUg15473 4 0.895 0.522 0.603 3 0.118 0.116 0.194 2 0.143 0.138  0.219
CoUgl15609 4 0.800 0.585 0.651 2 0.056 0.056 0.100 2 0.067 0.067 0.117
CoUg16919 8 0737 0.791 0.815 4 0.235 0.683 0.653 4 0214 0.691  0.657
CoUg65596 9 0.789 0.853 0.867 6 0.529 0.784 0.763 6 0.643 0.794  0.764
CoUg5643 6  1.000 0.750 0.785 4 0.000 0.734 0.713 4 0.000 0.751  0.724
CoUg3898 30177 0.415 0.445 - - - - - - - -
CoUgl2112 7 0.800 0.744 0.778 5 0.118 0.562 0.565 4 0.000 0.561  0.541
CoUg12183 3 0.111 0.298 0.34 - - - - - - - -
CoUg59126 6 0.947 0.626 0.683 4 0.278 0.614 0.631 4 0333 0.641  0.650
CoUg59697 10 1.000 0.811 0.832 4 0.389 0.467 0.509 30286 0.442 0475
CoUg59762 5 0923 0.607 0.667 5 0.722 0.759 0.747 5 0714 0.757  0.747
CoUg60001 4 0.900 0.472 0.566 4 0.056 0.427 0.432 3 0.067 0.301  0.320
CoUg62529 7 1.000 0.745 0.779 4 0.294 0.629 0.628 3 0.143 0.601  0.586
CoUg68309 3 0353 0.549 0.628 4 0.765 0.758 0.711 4 0.714 0.773  0.726
CoUg68886 4 0.579 0.607 0.654 3 0.111 0.560 0.580 3 0.067 0.549  0.555
CoUg3005 12 0.722 0.882 0.891 10 0.556 0.865 0.862 - - - -
CoUg3184 5 0474 0.739 0.775 5 0.222 0.751 0.731 5 0.286 0.759  0.728
CoUg3222 11 0944 0.878 0.888 7 0.375 0.802 0.818 7 0385 0.791  0.809
CoUg3397 11 0.750 0.856 0.870 8 1.000 0.873 0.849 7 0.867 0.851  0.821
CoUg6065 3 0.158 0.580 0.653 4 0.000 0.535 0.519 3 0.000 0.519  0.500
CoUg6948 7 0368 0.691 0.728 7 0.529 0.795 0.757 6 0.500 0.712  0.689
CoUg7148 6  0.526 0.680 0.718 5 0.353 0.779 0.767 5 0357 0.775  0.759
Mean 7.096  0.697 0.707 0.742 5319 0.362 0.672 0.670 4.610 0.302 0.652  0.649

N = number of individuals tested; N, = number of alleles; H_, = observed heterozygosity; H, = expected
heterozygosity. PIC = polymorphism information content.
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Putative function of the SSR-containing unigenes

To determine the function of polymorphic SSR-associated unigenes, the newly devel-
oped SSRs were evaluated for associations with genes of known function. The 52 sequences
were BLASTed against the GenBank nonredundant database using BLASTx with £ value
< 1 x 10°. Of the 52 unigenes, 35 showed significant similarities to known genes, includ-
ing those for an alpha/beta hydrolase fold family protein (CoUg65), an F-box family pro-
tein (CoUg3680), a pectate lyase family protein (CoUg7967), a zinc finger family protein
(CoUg4364), UDP-galactose/UDP-glucose transporter-related protein (CoUg60001), and oth-
ers listed in Table 1.

DISCUSSION

In this study we discovered 6949 SSR-motifs with 2-6 nucleotide repeats from 6042
SSR-containing unique putative transcripts among the 69,798 unigenes in C. oleifera. We
found that the most abundant SSR motifs in this tree species identified in this study were AG/
CT and AAG/CTT. A similar bias towards AG and AAG, and against CG repeats, has been
reported in EST-SSRs of other plant species (Blanca et al., 2011; Xu et al., 2012; Zhang et al.,
2012). According to Gonzalez-Ibeas et al. (2007), this may have resulted from the tendency of
CpG sequences to be methylated, which may potentially inhibit transcription.

We developed 52 polymorphic SSR markers in which all SSR motifs contained 20
or more nucleotides. Of these markers, 47 and 41 can be transferable to two allied species of
C. oleifera, C. chekangoleosa and C. japonica, respectively. In addition, the 52 SSR mark-
ers potentially encoded functional genes since they were developed from unigenes. Genbank
database search identified 35 of the 52 loci putatively coding for functional proteins, therefore
these genes may be correlated with seed development in C. oleifera. In comparison with ge-
nomic SSR markers, these unigene-derived SSR markers have special features because they
are associated with functional genes and may increase the efficiency of marker-assisted selec-
tion (Gupta and Rustgi, 2004). These 52 informative unigene-derived SSR markers will be
valuable for analyses of genetic variation and marker-assisted selection in breeding programs
for C. oleifera, C. chekangoleosa, and C. japonica.
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