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ABSTRACT. Glioma is the most aggressive type of brain tumor. Great 
progress has been achieved in glioma treatment, but the protein-protein 
interaction networks underlining glioma are poorly understood. We identified 
the protein-protein interaction network for glioma based on gene expression 
and predicted biological pathways underlying the molecular complexes in the 
network. Genes involved in glioma were selected from the Online Mendelian 
Inheritance in Man (OMIM) database. A literature search was performed using 
the Agilent Literature Search plugin, and Cytoscape was used to establish a 
protein-protein interaction network. The molecular complexes in the network 
were detected using the Clusterviz plugin, and pathway enrichment of 
molecular complexes was performed using DAVID online. There were 378 
glioma genes in the OMIM database. The protein-protein interaction network in 
glioma contained 1814 nodes, 6471 edges, and 8 molecular complexes. There 
were 17 pathways (false discovery rate <1), which were related to cytokine-
cytokine receptor interaction, Toll-like receptor signaling pathway, chemokine 
signaling pathway, oocyte meiosis, progesterone-mediated oocyte maturation, 
transmembrane transport of small molecules, metabolism of amino acids, and 
notch signaling pathway, among others. Our results provide a bioinformatic 
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foundation for further studies of the mechanisms of glioma.

Key words: Molecular complexes; Protein-protein interaction networks; 
Glioma; Pathways

INTRODUCTION

Gliomas, which are the most aggressive type of brain tumor, show high morbidity, a high 
recurrence rate, and high mortality. Glioma accounts for approximately 30% of brain and central nervous 
system tumors and 80% of malignant brain tumors (Goodenberger and Jenkins, 2012; Shao et al., 
2014). Survival of gliomas depends on the tumor type and malignancy grade (Constantin et al., 2012). 
According to World Health Organization standards, gliomas are classified into 4 malignant grades. Grade 
I-II gliomas can be treated with surgery and chemoradiotherapy, and are generally associated with a 
survival time of 5-10 years. The most lethal is grade IV glioblastoma, with a median survival of only 15 
months (Wen and Kesari, 2008) because of the inefficacy of surgery and chemoradiotherapy. In addition, 
over 50% of low-grade gliomas undergo malignant transformation into high-grade gliomas within 5-10 
years during recurrence (Dell’Albani, 2008). The prognosis of glioma, particularly high-grade (III-IV) 
glioma, is typically poor. Glioblastoma multiforme is the most predominant and most malignant form of 
glioma. Despite the high incidence of glioma, the etiology of this disease remains largely unknown.

Recently, the development of high-throughput experimental strategies has facilitated the study 
of characteristics underlying cancer progression. Several studies have investigated the gene expression 
signature in glioma patients (Ideker and Sharan, 2008; Zhao et al., 2008). Previous studies have mainly 
used regression or variance analysis to identify deregulated genes that may contribute to the glioma 
pathomechanism. However, these methods cannot address other array-specific factors, such as 
various background biological and environmental factors. Identifying the molecular characteristics of 
glioma patients may increase the understanding of the mechanism underlying glioma.

Because of the large number of targets involved in gliomas, the gene-protein network 
cannot be constructed using standard experiments. Numerous previous studies have examined 
gliomas, indicating that the gene-protein network can be constructed using a literature-mining 
method (Yang et al., 2009; Giacomelli and Covani, 2010). Construction through literature mining 
involves bioinformatics and computer science, among other fields, to sort and analyze existing 
data based on gene-protein interaction relationships to construct a regulation network of biological 
molecules in a cell. This method is important for identifying regulators and network-stable, therefore 
it has great application space (Strogatz, 2001; Pospisil et al., 2006).

To further examine glioma on the gene-protein network level, we used the human Mendel 
database to identify confirmed genes associated with gliomas, and then used Cytoscape application 
software to establish gliomas based on biological function gene-protein interaction networks. 
Subsequently, we determined topological properties and conducted modularity analysis of the 
network, and enriched the functional analysis and functional modules using DAVID software. We 
identified and analyzed key genes and signaling pathways in the network to predict the pathogenic 
site of the disease and the molecular mechanisms of gliomas.

MATERIAL AND METHODS

Data acquisition

On April 5, 2014 after searched ”glioma“ on the OMIM home page (http://www.ncbi.nlm.
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nih.gov/omim), gene information associated with gliomas was screened to remove duplicate genes 
(Amberger et al., 2009).

Construction of gene-protein interaction networks

Glioma-associated genes were searched in the Cytoscape 2.8.2 plug-in Agilent Literature 
Search 2.7.7 (USA Agilent Technologies, Santa Clara, CA, USA) and in Pubmed (Vailaya et al., 
2005). False-positive interaction information was removed from the results. Next, gene/protein 
interaction relationships were read in Cytoscape 2.8.2 and visualized (Shannon et al., 2003).

Network analysis

The MCOMD algorithm in Cytoscape 2.8.2 web analytics plug-in Clusterviz of 1.2 was 
used for correlation analysis to construct biological networks (Saito et al., 2012). By analyzing 
the network structure, proteins were grouped to form molecular compounds in the entire network 
and were viewed in Cytoscape based on the correlation integral value. The areas with integral 
values higher than 3 were regarded as molecular compounds. The gene/protein names contained 
in the molecular compounds were submitted to The Database for Annotation, Visualization, and 
Integrated Discovery (Huang et al., 2009). Using the Kyoko Encyclopedia of Genes and Genomes 
(KEGG) Database, biological pathways involved in glioma heredity were identified.

Main outcome measures

Protein networks were constructed based on glioma-related genes, nodes (proteins) and 
edges (interaction between), molecular complexes in the network and its associated interaction 
points, and nodes (protein) and the edges (interaction between) to analyze the biological pathways 
involved in the molecular complexes.

RESULTS

Glioma-related genes in OMIM

Through OMIM database retrieval, we identified 378 genes related to glioma, as shown 
in Table 1.

Protein interaction networks

The 378 glioma-related genes identified were constructed into a network diagram with 
1814 nodes (proteins) and 6471 edges. As shown in Figure 1, the triangles represent OMIM 
genetic disease-related proteins, while the diamonds represent proteins obtained from text mining.

Network topology attribute analysis

Network topology attribute analysis revealed that the connectivity of nodes in the network 
(the number of nodes in the network) had a descending distribution; as the edges connected to 
the node increased, the number of nodes decreased. Thus, the gene-protein interaction networks 
are scale-free networks (Burkard et al., 2010). We found that the degree of nodes in the network 
greater than or equal to 50 corresponded to a sharp reduction in the number of nodes (Figure 2). 
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Table 1. Glioma related genes in OMIM.

ID	 GENES	 ID	 GENES	 ID	 GENES	 ID	 GENES	 ID	 GENES

  1	 ABCB1	 77	 CTLA4	 153	 HOXD9	 229	 MRC2	 305	 REV3L
  2	 ABCC3	 78	 CTNNB1	 154	 IDH1	 230	 MSI1	 306	 RFX1
  3	 ABCG2	 79	 CTNNBIP1	 155	 IDH2	 231	 MST1R	 307	 RICTOR
  4	 ACSL5	 80	 CX3CR1	 156	 IDH3B	 232	 MTHFR	 308	 RTN4
  5	 ADAM17	 81	 CXCR4	 157	 IGF1	 233	 MYB	 309	 S100A13
  6	 ADAM22	 82	 CYP1B1	 158	 IGF1R	 234	 MYBL1	 310	 SCG5
  7	 ADAM3A	 83	 CYR61	 159	 IKBKB	 235	 MYC	 311	 SEMA3G
  8	 ADAM8	 84	 DKK1	 160	 IL10	 236	 NANOG	 312	 SERPINE1
  9	 AHR	 85	 DLK1	 161	 IL16	 237	 NCOR1	 313	 SETD2
10	 AJAP1	 86	 DLL4	 162	 IL24	 238	 NCOR2	 314	 SH3GL1
11	 AKT1	 87	 DMBT1	 163	 INA	 239	 NDRG2	 315	 SH3GL3
12	 AKT2	 88	 DNAJA3	 164	 ING1	 240	 NDRG4	 316	 SIRT2
13	 ALCAM	 89	 DPP4	 165	 ING4	 241	 NDUFA13	 317	 SLC16A4
14	 ALK	 90	 DVL2	 166	 ITGAV	 242	 NEDD4L	 318	 SLC22A17
15	 ALOX12	 91	 EBAG9	 167	 JAK2	 243	 NEO1	 319	 SLC38A3
16	 ALOX15	 92	 EFEMP1	 168	 KCNN4	 244	 NES	 320	 SLC3A2
17	 ALOX5	 93	 EFNA1	 169	 KDM1A	 245	 NEWENTRY	 321	 SLC5A8
18	 ANGPT2	 94	 EGF	 170	 KEAP1	 246	 NF1	 322	 SLC7A11
19	 ANGPTL4	 95	 EGFR	 171	 KIAA1549	 247	 NFKB1	 323	 SLC7A5
20	 APEX1	 96	 EMC10	 172	 KIF14	 248	 NGF	 324	 SLC9A3R1
21	 APLN	 97	 EMP3	 173	 KIT	 249	 NGFR	 325	 SLIT2
22	 APLNR	 98	 ENTPD1	 174	 KLF6	 250	 NKIRAS1	 326	 SMAD1
23	 AQP1	 99	 EPHA2	 175	 KLF8	 251	 NME1	 327	 SNAI2
24	 AQP4	 100	 ERCC1	 176	 KPNA2	 252	 NOTCH1	 328	 SOCS3
25	 ASPM	 101	 ERCC2	 177	 L1CAM	 253	 NOTCH2	 329	 SOX10
26	 ATG5	 102	 ERCC5	 178	 LAMC2	 254	 NR2E1	 330	 SOX2
27	 ATM	 103	 ERCC6	 179	 LCN2	 255	 NRG1	 331	 SOX6
28	 ATRX	 104	 ESM1	 180	 LETMD1	 256	 NRP2	 332	 SOX9
29	 AURKA	 105	 F2	 181	 LGALS1	 257	 NT5E	 333	 SP1
30	 AURKB	 106	 FAS	 182	 LGALS3	 258	 NUMBL	 334	 SP3
31	 BCAN	 107	 FAT1	 183	 LGI1	 259	 OLIG2	 335	 SPDYA
32	 BCL2	 108	 FBXW7	 184	 LIG4	 260	 OSM	 336	 SPP1
33	 BDNF	 109	 FGF2	 185	 LMX1A	 261	 PAX6	 337	 SPRY2
34	 BECN1	 110	 FOCAD	 186	 LNX1	 262	 PCDHGA11	 338	 STAT3
35	 BIRC5	 111	 FOSL1	 187	 LOC652614	 263	 PCSK6	 339	 Symbol
36	 BMI1	 112	 FRAT1	 188	 LRRC4	 264	 PDCD4	 340	 TAX1BP3
37	 BMP2	 113	 FUBP1	 189	 LRRN2	 265	 PDCD5	 341	 TERF1
38	 BMP4	 114	 GDF15	 190	 MAGED1	 266	 PDGFA	 342	 TERT
39	 BMPR1B	 115	 GEMIN2	 191	 MAPK14	 267	 PDGFB	 343	 TET1
40	 BNIP3	 116	 GFAP	 192	 MAPK3	 268	 PDGFRA	 344	 TET2
41	 BNIP3L	 117	 GFI1	 193	 MARK4	 269	 PEBP1	 345	 TGFB1
42	 BRAF	 118	 GOLPH3	 194	 MBD4	 270	 PER1	 346	 TGFB2
43	 BSG	 119	 GPC1	 195	 MCTS1	 271	 PER2	 347	 THBS1
44	 CADM1	 120	 GPNMB	 196	 MDK	 272	 PIN1	 348	 THY1
45	 CASP3	 121	 GPR26	 197	 MDM2	 273	 PIWIL1	 349	 TIMD4
46	 CCK	 122	 GPRASP1	 198	 MDM4	 274	 PKM	 350	 TIMP3
47	 CCL20	 123	 GRIA1	 199	 MET	 275	 PLAUR	 351	 TK1
48	 CCL3	 124	 GRIA2	 200	 MGMT	 276	 POLK	 352	 TKTL1
49	 CCL7	 125	 GSK3B	 201	 MIF	 277	 POU5F1	 353	 TNC
50	 CCND1	 126	 GSTM1	 202	 MIIP	 278	 PPM1D	 354	 TNFRSF10B
51	 CCR6	 127	 GSTP1	 203	 MIR106B	 279	 PPME1	 355	 TNFRSF11A
52	 CD24	 128	 GSTT1	 204	 MIR137	 280	 PRAF2	 356	 TNFSF10
53	 CD274	 129	 GUCY1A3	 205	 MIR182	 281	 PRKAA2	 357	 TOP2A
54	 CD40	 130	 H3F3A	 206	 MIR183	 282	 PROM1	 358	 TP53
55	 CD44	 131	 HDAC1	 207	 MIR196A1	 283	 PROX1	 359	 TRAF1
56	 CD74	 132	 HDAC2	 208	 MIR196B	 284	 PTBP2	 360	 TRAF2
57	 CDC25A	 133	 HDAC3	 209	 MIR203A	 285	 PTEN	 361	 TRIM11
58	 CDH1	 134	 HDGF	 210	 MIR20A	 286	 PTGER2	 362	 TRIM3
59	 CDH11	 135	 HEXA	 211	 MIR21	 287	 PTGES	 363	 TWIST1
60	 CDH2	 136	 HEXB	 212	 MIR218-1	 288	 PTGES2	 364	 VCAN
61	 CDK1	 137	 HGF	 213	 MIR221	 289	 PTGES3	 365	 VEGFA
62	 CDKN1B	 138	 HIF1A	 214	 MIR222	 290	 PTGS1	 366	 WDR11

Continued on next page
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Therefore, we regarded the nodes which connectivity is greater than or equal to 50 as key nodes 
(hub). Key nodes included akt1, tnfsf13, tp53, ephb2, pik3ca, mapk3, mapk14, il6, cdkn1a, vegfa, 
mapk8, stat3, egfr, myc, bcl2, cdkn2a, apc, ptgs2, pten, hcc, ccl2, and ervk2.

ID	 GENES	 ID	 GENES	 ID	 GENES	 ID	 GENES	 ID	 GENES

63	 CDKN2A	 139	 HJURP	 215	 MIR27B	 291	 PTGS2	 367	 WNT1
64	 CHEK2	 140	 HK2	 216	 MIR30A	 292	 PTK2	 368	 WNT2
65	 CHI3L1	 141	 HLA-B	 217	 MIR335	 293	 PTP4A3	 369	 WNT5A
66	 CHN2	 142	 HLA-C	 218	 MIR372	 294	 PVR	 370	 WRN
67	 CIC	 143	 HLA-DQB1	 219	 MIR375	 295	 RAC2	 371	 WT1
68	 CLCN3	 144	 HLA-DRB1	 220	 MIR383	 296	 RASL10A	 372	 WWTR1
69	 CLIC1	 145	 HLA-DRB3	 221	 MIR410	 297	 RASSF10	 373	 XBP1
70	 CNR1	 146	 HMG20B	 222	 MIR452	 298	 RB1	 374	 XRCC1
71	 CNR2	 147	 HMGA1	 223	 MIR483	 299	 RBL2	 375	 XRCC3
72	 CNTFR	 148	 HMGN5	 224	 MKI67	 300	 RBP1	 376	 XRCC4
73	 COL18A1	 149	 HNRNPA1	 225	 MMP14	 301	 RBPJ	 377	 YY1
74	 CRABP2	 150	 HNRNPA2B1	 226	 MMP2	 302	 RECQL	 378	 ZAR1
75	 CSF2	 151	 HNRNPH1	 227	 MMP3	 303	 REG4		
76	 CTGF	 152	 HOXA9	 228	 MMP9	 304	 RELA

Table 1. Glioma related genes in OMIM.

Figure 1. Network map of glioma protein interaction (overall + partial).

Detection of molecular complexes

Through MCOMD algorithm analysis, we identified 8 molecular complexes whose 
correlation integral values were higher than 3 (Figure 3).

Molecular complex pathway enrichment

The 8 names of protein molecule complexes were searched online to identify the relevant 
pathways (Table 2). Using hypergeometric distribution test software (DAVID) (Bader and Hogue, 
2003) (parameters: count = 2, EASE = 0.1, “species and background” choosing “Homo sapiens”), 
we conducted function analysis of modules contained in the 2 networks. According to the pathway 
annotations, we identified biological signaling pathways (Ashburner et al., 2000) corresponding to the 
modules and sorted false-discovery rate values of biological processes, considering a false-discovery 
rate ≤ 1 as a statistically significant difference in the biological process (Burkard et al., 2010).
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Figure 2. Connectivity degree of each node and betweenness (betweenness) comparison (horizontal axis represents 
betweenness, and the ordinate represents the connectivity degree. The graphic in the table represents each node in 
the network). The connectivity (number of nodes in the network) of nodes in the network obeys descending distribution, 
while the connectivity is greater than or equal to 50, and the number of nodes corresponds to a sharp decrease.

Figure 3. Molecular complexes obtained by MCOMD algorithm analysis. 
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DISCUSSION

Based on the 378 genes identified by OMIM, we constructed a glioma protein interaction 
network containing 1814 nodes (proteins) with 1830 edges (interaction). We next examined 
whether the network could describe the molecular regulation of glioma development. According to 
the existing literature, the anti-apoptotic protein B-cell lymphoma 2 (BCL2) has been implicated in 
the pathogenesis of glioma. BCL2A1 is a potential biomarker that influences preoperative seizure 
occurrence and postoperative seizure control in patients with low-grade gliomas (You et al., 2013; 
Li et al., 2014). TP53 is a pivotal gene frequently mutated in diffuse gliomas and particularly 
in astrocytic tumors (Takami et al., 2014); CCL2 was among the first identified in gliomas, and 
it is overexpressed in colon carcinomas. Its silencing inhibits colon cancer cell proliferation or 
increases the sensitivity to apoptotic stimuli of glioma cells, suggesting an oncogenic role (Carrillo-
de Sauvage et al., 2012). Increasing evidence suggests that interplay between the Wnt/β-catenin 
and phosphoinositide 3-kinase /AKT signaling cascades are involved in tumor development and 
progression. Chen found that the expression levels of AKT1 in glioma cells were significantly 
correlated with the transcriptional activity of β-catenin (Pan et al., 2012). Mori found that the 
adenomatous polypopsis coli mutations in brain tumors were associated with the pathogenesis 
of one feature of Turcot syndrome (Siesjö et al., 1996); Zadeh et al., (2007) found that CDKN2A-
deleted patients were younger than CDKN2A non-deleted patients in malignant gliomas in Iranian 
patients. Faulkner et al. found that neither epidermal growth factor receptor vIII (EGFRvIII) or 
EGFR were predictive of overall survival in their cohort; 49% of glioblastoma cases showed 
EGFR alterations, including 31% with EGFRvIII, and thus EGFR and EGFRvIII can be used 
as therapeutic biomarkers of glioblastoma (Cherry and Stella, 2014). The microenvironment of 
glioblastoma contains high levels of inflammatory cytokine interleukin 6, which contributes to tumor 
progression and invasion (Gurgis et al., 2014). Among the factors and pathways implicated in 
glioma development and growth, the kinases phosphoinositide 3-kinase and mitogen-activated 
protein kinase are among the most studied (Daniel et al., 2014). Annibali et al., (2014) found that 
Myc inhibition reduces proliferation, increases apoptosis, and, remarkably, elicits the formation of 
multinucleated cells that then arrest or die by mitotic catastrophe, revealing a new role for Myc in 
the proficient division of glioma cells. Some results confirmed that PIK3CA mutations occurred in a 
significant number of human glioblastomas, making it a promising target for therapy, particularly for 
primary glioblastomas (Weber et al., 2011; Derakhshandeh-Peykar et al., 2012). A meta-analysis 
by Xiao et al. (2012) provided direct and strong evidences that mutations in the PTEN gene were 
correlated with the poor prognosis of glioma patients (Han et al., 2014). The PTGS2, EGFR, and 
various types of EGFR ligands are highly expressed in human gliomas and other cancers and are 
involved in tumor progression (Dancey, 2004). In gliomas, STAT3 can play tumor-suppressive or 
oncogenic roles depending on the tumor genetic background of the patient, but the target genes 
are largely unknown (Kruczyk et al., 2014).

These are relational pathogenesis of glioma. We constructed a network that comprises 
these genes or proteins The network appeared to be reliable and can be used to describe the 
interactions between molecules related to glioma.

Because the network is very large, we used the MCOMD algorithm to evaluate the network’s 
regional integration using the correlation integral. The correlation integral describes proteins 
associated with the degree within the region. Proteins in the same molecular complexes generally 
have the same biological function, and thus unknown gene functions or new molecular functional 
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groups can be identified. Eight molecular complexes showed correlation integrals of greater than 
3. DAVID is not only extensive in gene annotation in different species, but also enriched with 
biological information for single genes. The protein molecule biological pathways of complexes 2, 
5, and 7 are not existent, which may have two explanations. First, although the relevance of these 
molecular complex correlation integrals was higher, a protein with similar biological functions could 
not be confirmed. Second, existing studies have not revealed the biological pathways involved. 
Molecular complexes 1, 3, 4, 6, and8 were found to be involved many biological pathways. Table 
2 shows its complexity, for which there was 1 biological pathway whose false-discovery rate < 1 in 
molecular complex 1, 9 pathways in molecular complex 3, 3 pathways in molecular complex 4, 2 
pathways in molecular complex 6, and 2 in molecular complex 8.

Molecular complex 3 was predicted to be related to the cytokine-cytokine receptor 
interaction, Toll-like receptor signaling pathway, chemokine signaling pathway, p53 pathway 
feedback loops 2, and endometrial cancer. A previous study indicated that chemokine and 
chemokine receptor expression by tumor cells contributed to tumor growth and angiogenesis and 
thus these factors may be tumor markers and have crucial impacts on therapeutic interventions 
(Razmkhah et al., 2014).

There is increasing evidence that cytokines play roles in these processes. Cytokines directly 
influence the progression of malignant glioma, promoting or suppressing tumor progression (Zhou 
et al., 2014). Thus, the cytokine-cytokine receptor interaction pathway (CCL1, CXCL1, CCL3, CCL2, 
CCL5, CCL4, and CXCL10) and chemokine signaling pathway (CCL1, CXCL1, CSF3, IL17A, CCL3, 
IL6, IL23A, CCL2, TNFRSF10D, CCL5, CCL4, and CXCL10) require further analysis.

In addition to the other molecular complexes, progesterone-mediated oocyte maturation 
is related to the pathogenesis of glioma (Hassanzadeh and Arbabi, 2012); high notch pathway 
activation predicts a response to γ secretase inhibitors in the proneural subtype of glioma tumor-
initiating cells (Saito et al., 2012). The genes involved in this signaling pathway may provide a basis 
for the molecular therapy to treat glioma. Glioma is not simply controlled by a particular gene or 
signaling pathway, but by a complex network system coordinately regulated and consisting of a 
variety of signaling pathways and multiple genes. In the signaling network, it is likely that there are 
some “key regulatory points”.

Our study extended the original method used for glioma analysis from a single factor 
to a systematic, overall point perspective by constructing a network. Our results may provide 
new drug development guidance for treating glioma on the gene-protein network level. We used 
Cytoscape 2.82 for data mining and module analysis based on the OMIM database, and a small 
number of genes were identified because a single source of data was used, and because of the 
software features. Our constructed gene-protein interaction network did not reflect the regulatory 
relationship between the genes and proteins, and thus, further analysis is required.
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