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ABSTRACT. Recent progress in computational methods for inves-
tigating physical and functional gene interactions has provided new 
insights into the complexity of biological processes. An essential part 
of these methods is presented visually in the form of gene interaction 
networks that can be valuable in exploring the mechanisms of disease. 
Here, a combined network based on gene pairs with an extra layer of re-
liability was constructed after converting and combining the gene pair 
scores using a novel algorithm across multiple approaches. Four groups 
of kidney cancer data sets from ArrayExpress were downloaded and 
analyzed to identify differentially expressed genes using a rank prod-
ucts analysis tool. Gene co-expression network, protein-protein interac-
tion, co-occurrence network and a combined network were constructed 
using empirical Bayesian meta-analysis approach, Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING) database, an odds 
ratio formula of the cBioPortal for Cancer Genomics and a novel rank 
algorithm with combined score, respectively. The topological features 
of these networks were then compared to evaluate their performances. 
The results indicated that the gene pairs and their relationship rank-
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ings were not uniform. The values of topological parameters, such as 
clustering coefficient and the fitting coefficient R2 of interaction net-
work constructed using our ranked based combination score, were 
much greater than the other networks. The combined network had a 
classic small world property which transferred information quickly and 
displayed great resilience to the dysfunction of low-degree hubs with 
high-clustering and short average path length. It also followed distinct-
ly a scale-free network with a higher reliability. 

Key words: Gene interaction; Empirical Bayesian model; cBioPortal;
Protein-protein interaction; Scale-free network; Small word network

INTRODUCTION 

A common goal of microarray and related high-throughput genomic experiments is to 
identify differentially expressed genes (DEGs) that provide insight into the understanding and 
treatment of disease. However, it does not accommodate other types of differential regulation 
(Braga-Neto and Dougherty, 2004), despite being useful to identify DEGs that vary across 
biological conditions. Meanwhile, diseases result from differential regulation (upregulation 
or downregulation) of genes that are frequently related and have a function in similar biologi-
cal processes and pathways (Lee et al., 2004). It would be an important milestone towards a 
comprehensive description of disease mechanisms, knowing functional connections varying 
between stable complexes, metabolic pathways and a bewildering array of direct and indirect 
regulatory interactions between DEGs. 

    It is essential to correctly uncover and annotate all functional interactions between 
genes for any systems-level understanding of biological functions. With the development of 
bioinformatics, a large number of approaches have been proposed to evaluate gene interac-
tions based on protein or nucleotide sequences on a large scale (Skrabanek et al., 2008; Zhang 
et al., 2014), both in terms of experimental measurements and computational prediction tech-
niques. Among them, an empirical Bayesian (EB) approach has been applied, which can com-
bine the results analyzed from our experimental data with meta-analysis findings. It effectively 
avoids the disadvantage of inconsistent co-expression between different studies by providing 
a false discovery rate (FDR) controlled list of significantly differentially co-expressed gene 
pairs (Dawson and Kendziorski, 2012). It is applicable within a single study as well as across 
multiple studies with considerable power by conducting an analysis under different condi-
tions. Besides, it provides a useful tool to understand gene/protein interactions with PPI of 
the STRING database, which provides a global perspective for as many organisms as possible 
as an online resource. It can integrate and rank protein/gene associations by benchmarking 
them against a common reference set, and presents evidence in a consistent and intuitive web 
interface (Von Mering et al., 2005). In addition, it can also illustrate gene interactions in ge-
netic alterations with an odds ratio (OR) formula which can describe the patterns of mutual 
exclusivity, co-occurrence or no association between multiple genes. cBioPortal is applied 
here, which facilitates the exploration of multidimensional cancer genomics data by allowing 
visualization and analysis across genes, samples, and data types (Gao et al., 2013).

Network-based approaches have become more powerful and informative for the study 
of disease mechanism (Bradley et al., 2008). Especially the analysis of gene interaction net-



A.M. Zhang et al. 7020

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (2): 7018-7030 (2015)

works has proven effective for characterizing cellular processes in biologic research. In these 
networks, genes and their relationships are graphically represented as nodes and edges, respec-
tively. On the other hand, at some extent, it sets up obstacles of useful information extracted 
from the various kinds of network data with the increase in large bioinformatic data. Currently, 
research on complex networks has attracted a great deal of attention since the discovery of the 
small-world phenomenon and scale-free property (Watts and Strogatz, 1998; Barabási and Al-
bert, 1999). Compared to the random network, a scale-free network is a network whose node’s 
degree follows a power law distribution, and the scale-free topology characteristics have a 
higher robustness to endure the random failure (Chen et al., 2009). The small-world network 
has two independent structural features with a small average shortest path length and a large 
clustering coefficient (Gitterman, 2000). 

In this paper, we applied a novel algorithm to combine the interaction scores of each 
gene pair obtained using a variety of methods. The topological features, including clustering 
coefficient, average shortest path length and degree of distribution, were investigated and com-
pared to see which tended to follow more a scale-free network and small word network after the 
construction of gene interaction networks of different methods. First, we focused on kidney can-
cer and identified DEGs using the RP package. To compare the approaches for analyzing gene 
interactions, the related scores of gene pairs were obtained using EB coexpress meta analysis, 
STRING database and OR algorithm. Considering the faults of predicted outcomes involving 
the EB model and STRING approach, we converted and united all scores from the three methods 
using a rank based model and obtained a combined score of each gene pairs. The gene co-ex-
pression network, PPI, co-occurrence and a combined network according to the above were then 
constructed, and their topological properties were further analyzed. This may provide a new tool 
to analyze gene interactions with a higher reliability strength and rapid information transmission 
combining the scores of each gene pair across multiple approaches.  

MATERIAL AND METHODS

Subject samples and pretreatment process

Transcription expression profiles of kidney cancer biological data (E-GEOD-53757), 
(E-GEOD-36895) (Peña-Llopis et al., 2012), (E-GEOD-26574) and (E-GEOD-46699) were 
available from ArrayExpress (http://www.ebi.ac.uk/arrayexpress/). After pretreatment of these 
data by robust multi-array average (RMA) (Ma et al., 2006), quartile based algorithm (Rifai 
and Ridker, 2001), MAS5 algorithm (Zhang et al., 2003) and median polish summarization 
methods, unqualified chips were eliminated, leaving only qualified data into the next step 
through quality control. The gene expression values of all data were transformed to a compa-
rable level, a digital expression profile for subsequent analysis. The data were then screened 
by a feature filter method of the genefilter package, and the probe-sets associated with one 
gene were analyzed by the maxim-based method to choose the most significant differentially 
expressed ones. Finally, an expression profile dataset including 20,107 common genes was 
obtained for further analysis. 

Detection of DEGs  

Considering that four kidney cancer data were from different origins, we detected 
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DEGs using rank products (RP) (Breitling et al., 2004), which is a powerful meta-analysis 
tool for integrating multiple array data sets from various experimental platforms. This method 
could be used to know how significant the changes were and how many of the selected genes 
were likely to be truly differentially expressed. Here, we let T and C stand for two experimen-
tal conditions (treatment versus control), and there are nT and nC, mT and mC, sT and sC, and wT 
and wC replicates in the first, second, third and fourth dataset, respectively.

Rank product for each gene was determined according to (1):

where rgi is rank of gth gene under ith comparison. i = 1, . . . , K, K = (nT x nC ) + (mT x mC ) + 
(sT x sC) + (wT x wC ).

Rank product for each gene was presented in the form of -log2, and the percentage of 
false-positives (pfp) smaller than 0.05 was considered to be differentially expressed. The pfp 
was given by the expression:  

ERP(g) is the average expected value for the rank product; p is the permutations of K 
rank lists of length n; c value is the times that the rank products of the genes in the permuta-
tions are smaller or equal to the observed rank product; pfp (g) is the percentage of false posi-
tives; rank (g) is the rank of gene g in a list of all genes sorted by increasing RP.

Construction of gene-gene interaction network for DEGs

Identifying differential co-expression by empirical Bayesian approach

Currently, many approaches have been developed for co-expression analysis to iden-
tify differentially co-expressed (DC) gene pairs, but they are often prone to false discoveries 
under the conditions of large cardinality of the space to be interrogated (Cho et al., 2009). 
Here, we conducted an EB approach, which provided an FDR controlled list of interesting 
pairs along with pair-specific posterior probabilities to identify DC gene pairs (Dawson and 
Kendziorski, 2012). DC genes were distinguished from gene pairs having invariant expres-
sion by controlling the posterior expected FDR at 0.05, and the co-expression network was 
constructed to represent the correlation between each pair of genes in the study.

Scoring of gene associations using STRING database

At present, protein/gene interactions and associations are annotated at various levels 

(Equation 1)

(Equation 2)

(Equation 3)
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of detail, ranging from raw data repositories to highly formalized pathway databases in online 
resources. STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) aims to sim-
plify access to this information by providing a comprehensive, yet quality-controlled, collec-
tion of protein-protein associations for a large number of organisms with a global perspective. 
Most of the available information on protein/gene associations could be aggregated, scored 
and weighted with known and predicted interactions. Besides, protein interactions across di-
verse experimental conditions could be measured as a predictor of functional associations in 
STRING, which was used in our study. It employs two different strategies for transferring 
known and predicted associations between organisms (Von Mering et al., 2005). After assign-
ment of association scores and transfer between species, a combined score between any pair 
of proteins was computed which increased confidence with a higher score than the individual 
sub-scores. This combined score took into account the prediction and known scores obtained 
from the STRING database from each protein interaction and was calculated according to the 
formula (4) shown below:

where SAB is the score for the interaction between proteins A and B, and Si is the score normal-
ized by the biggest value calculated for the method i.

Afterwards, a graphical PPI network was constructed and the topological features of 
the network were further analyzed.

Co-occurrence pattern of multiple genes in gene mutation 

In addition to the above two methods of analyzing gene interactions, another strategy 
of determining gene co-occurrence pattern involving gene mutation has also been cited to 
identify functionally associated genes. In our study, DEGs were input in the cBioPortal for 
Cancer Genomics (http://www.cbioportal.org), which was used to store genomic data from 
large scale, integrated cancer genomic data sets, and renal clear cell carcinoma (Network, 
2013) was selected as the cancer study in this research. With the genomic profiles filtered 
further, a total of 392 cases associated with kidney cancer were selected to explore whether 
gene pairs pertained to the co-occurrence model while genetic alterations occurred in multiple 
genes. The results indicated genes altered in 141 cases, or 36 of all samples. An odds ratio 
(OR) was determined, which indicated the likelihood that the events in the each pair of query 
genes GA and GB were co-occurring in 141cases. The formula (5) is given as follows:

where: Nb indicates the number of cases altered in both genes; Nn indicates number of cases 
altered in neither genes; Na and Nb indicate number of cases altered in only one gene, GA and 
GB, respectively.

After the co-occurrence score (i.e., P value) of each pair of DEGs was computed, a 

(Equation 4)

(Equation 5)
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network was constructed via linking gene pairs with P < 0.05 using Cytoscape, a free software 
package for visualizing, modeling and analyzing the integration of biomolecular interaction net-
works with high-throughput expression data and other molecular states (Shannon et al., 2003).

Conversion and combination of gene association scores of the three methods 

After gene interactions were analyzed using the above three methods, the score of 
each gene pair was obtained. Considering that the results were different by taking various 
approaches, all score values were processed further to keep uniform at the same standard. To 
reach the goal, a novel algorithm was implemented to convert the scores of all gene pairs in 
our study, using the expression (6) given as follows: 

where Scom indicates the combined score of all gene pairs with integrating multiple results, n 
denotes the number of methods, N = 3 in this study. M represents the number of gene pairs of 
the DEGs, N denotes rank of a pair of genes. With combining the scores of each gene pair from 
the above three results, a new score was produced by calculating their averages and sorted 
again. The combined gene interaction network was then constructed via linking gene pairs 
while controlling the N/M at 10% (i.e., -2logN/M >= 6.643856).  

After the calculation of scores using the above methods and construction of four  net-
works, the clustering coefficient and their short average path length were also obtained and 
compared to investigate whether the networks constructed from the above four methods had 
the classic small word network property. Besides, since protein/gene interaction networks in 
general are modular (Ravasz et al., 2002) and scale-free (Barabási and Albert, 1999), which 
meant that they had power-law (or scale-free) degree distributions, the fitting coefficient R2 of 
the power-law y = axb of the four networks was also compared. The evaluation of topological 
parameters was done using Network Analyzer Version 2.7 (Assenov et al., 2008)  plug-in at 
Cytoscape Version 3.1.0 (Morris et al., 2014). 

RESULTS

Detection of DEGs between kidney cancer and normal

Four kidney cancer microarray data sets for normal and diseased subjects from differ-
ent origins were subjected to integrated analysis to identify DEGs using the Rankprod method. 
The identification in the Rankprod package consists of two parts, the identification of upregu-
lated and downregulated genes in class 2 compared to class 1, respectively. After combining 
the data of the four groups and analyzing them using RPadvance function, 90 DEGs were 
detected, including 28 upregulated genes and 62 downregulated genes with an estimated pfp 
< 0.05 (Figure 1).

(Equation 6)
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Figure 1. Column Chart of degree of differential expression (fold-change) of 90 DE genes in the four kidney 
cancer data. Plotted above the X-axis with red color for upregulation, while below the X-axis with red color for 
downregulation. 
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EBcoexpress approach and construction of gene co-expression network 

Here, the empirical Bayesian approach was used to identify DC gene pairs separately 
for 90 DEGs. A list of 627 protein pairs with FDR of 5% and relational values of all pairs (i.e., 
EB values) were obtained after analyzing gene expression relationship using meta-analysis. 
We found that each pair of a total of 76 protein pairs showed a strong correlation, with EB 
score of 1. SCNN1G and ATP6V0D2, as the top two degree ranked of the 76 pairs, connected 
closely with the other 15 and 11 proteins, respectively. The degree indicated the number of in-
teraction of a protein with the other proteins. To improve the comparability of the results with 
the four methods, the minimum edges were chosen as a benchmark to analyze. A gene inter-
action network of the top 39 protein pairs containing 26 nodes and 39 edges was constructed 
in our analysis (Figure 2A). The network was binary, where all interactions were unweighted 
and undirected. Besides, the clustering coefficient was 0.323 and mean shortest path 16.88. 
Degrees of proteins were presented, and a fitting coefficient R2 of 0.804 of their degree distri-
bution was obtained after nonlinear regression according to the power law (y = axb).   

Figure 2. Graphical representation of (A) EB co-expression network, (B) PPI (C) co-occurrence network. Genes 
were denoted as nodes in the graph and interactions between gene pairs were presented as edges. To facilitate 
comparisons, there were 26, 35, and 36 nodes in these three networks, respectively at the same benchmark of the 
top ranked 39 gene pairs.
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Scoring of protein associations and construction of PPI network 

Considering the various major sources of association, data in STRING are benchmarked 
independently. In our study, a combined score was computed with the known and predicted asso-
ciations of STRING data. The combined score indicated higher confidence when more than one 
type of information supported a given association. Each score represented a rough estimate of 
how likely a given association described a regulation between two proteins. A graphical protein-
protein interaction (PPI) network (Figure 2B) of interaction partners was then presented with 35 
nodes and 39 edges, and relational values of all pairs (i.e., STRING values) were obtained in 
the context of inputting 90 DEGs. The clustering coefficient was 0.151 and mean shortest path 
31.34. After degree distribution was conducted by nonlinear curve fit according to the power law 
(y = axb), a fitting coefficient (R2 = 0.810) was obtained. The top three degree ranked proteins 
were ALB, ALDOB and KNG1 by associating with the other 12, 8 and 6 proteins, respectively. 
ALB and KNG1 (score = 0.982), ALB and SRGN (score = 0.969), TPI1 and ALDOB (score = 
0.954) were the top three protein pairs with high interactions.

Detection of gene co-occurrence and gene interaction network construction

The need for similar regulation is often reflected in a tendency of functionally associ-
ated genes to occur in a specific disease. The co-occurrence pattern of gene mutations was 
also applied to evaluate gene interaction. With the above 90 DEGs inputted in cBioPortal, co-
occurrence scores of all 4006 pairs were obtained. The five most significant gene pairs were 
COL23A1 and FGF1, COL23A1 and CTXN3, FGF1 and CTXN3, ATP6V0D2 and SLC26A7, 
and TMEM178A and TMEM52B with the same score (P = 1.00 x 10-6). The gene interaction 
network was constructed with 36 nodes and 39 edges by choosing the top 39 pairs after the 
protein pairs with P < 0.05 were loaded into the Cytoscape software (Figure 2C). Likewise, 
the degrees of all nodes were presented and a fitting coefficient (R2 = 0.891) of their degree 
distribution was obtained after nonlinear regression.

Combination of all gene pair scored and construction of gene interaction network

After all score values of the above three methods were unified, the scores of each 
gene pair were combined and an integrated score rank was presented with their averages. The 
top three ranked gene pairs were FABP1 and KNG1, KCNJ1 and SLC12A1, and APOH and 
FABP1 with a mean of 11.66, 11.63, and 11.14, respectively.

The gene interaction network was constructed containing 42 nodes and 57 edges from 
the top 57 gene pairs with N/M <= 10% (Figure 3A). SCNN1G, KNG1, and ATP6V0D2 were 
viewed as hub genes with a degree of 12, 7, and 6, respectively. According to further analysis, 
we found that the combined interaction network conformed to the scale-free network whose 
degree distribution followed the power law y = axb (where a = 12.62, b = -1.194) (Figure 3B). 
Besides, the clustering coefficient, the mean shortest path (Figure 4) and the fitting coefficient 
R2 were compared (Table 1) by aggregating the above four methods. It showed that the values 
of the clustering coefficient and fitting coefficient R2 of the combined network were much 
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greater than the other three kinds of networks. It tended to be much more a scale-free network, 
adding an extra layer of reliability, and had the small world network feature with a short av-
erage path length between nodes, which could transfer information quickly at “low cost.” A 
priori, it could also display great resilience to the dysfunction of low-degree hubs in this kind 
of network.

Figure 3. Gene interactions across multiple approaches based on 90 DE genes A: Gene interactions network map of 
the combined scores of each gene pairs with the three methods. A total of 35 nodes and 39 edges were composed in 
this network. B: Scatter Gram of DE genes in gene interactions network. The combined gene interactions network 
was a scale-free network whose gene degree distribution followed a power law y = axb (where a = 12.62, b = 
-1.194). 

Figure 4. Comparison of clustering coefficient and mean shortest path length between the networks. The combined 
network presented a classic small word network property with the high-clustering and a short average path length. 
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Table 1. Fitting results and Clustering Coefficient, Mean Shortest Path Length for the gene co-expression 
network, PPI, co-occurrence network compared against the combined network after converting with our new 
algorithm.

Measure	 Co-expression network	 PPI network	 Co-occurrence network	 Combined network

R2	     0.804	     0.810	     0.891	     0.920
Clustering Coefficient	     0.323	     0.151	     0.311	     0.389
Mean Shortest Path Length	 16.88	 31.34	 33.97	 22.73

DISCUSSION

 Here, the gene interaction network of DEGs was constructed with a list of combined 
scores of gene pairs across multiple approaches which followed obviously a scale-free net-
work and small word network. The combined network enables a topological characterization 
of the reliability strength of gene associations. Four sets of kidney cancer data were available 
for normal and diseased subjects and a total of 90 DEGs were identified using RP package. 
Gene interaction values of the 90 DEGs were computed with the EB coexpress meta-analysis 
approach, STRING database and OR algorithm with cBioPortal, and gene co-expression net-
work, PPI, co-occurrence and combined networks were constructed visually. Here, to facilitate 
comparisons, the same benchmark of the top ranked 39 gene pairs were selected (input to net-
work generation). New scores of each gene pair, combining the above three methods results of 
a novel algorithm, were produced in the form of -2logN/M, and the combined score gene inter-
action network was presented of the same 39 edges of the former. After the degree distribution, 
clustering coefficient and mean shortest path length of topological properties were compared. 
The combined gene interaction network was revealed evidently a scale-free network feature 
and held a classic small world network.

    The capabilities of bioinformatic tools for DEG detection, network analysis, gene 
ontology and gene-disease relationships (Özgür et al., 2008; Tranchevent et al., 2011), to-
gether with all available data on protein/gene expression in cancer, provide an interesting and 
valuable opportunity for disease study. It is thought that the incidence of cancer is closely 
related to the abnormal expression of many genes. However, much more research is needed 
beyond only identifying DEGs to fully understand the complex mechanism of cancer. It is 
essential to explore the many gene interactions that participate in functionally biological pro-
cesses. Many papers have reported gene interactions ranging from a single study (Jupiter 
and VanBuren, 2008) to combining pairwise gene interaction evidence across studies by the 
vote-counting method (Niida et al., 2009). However, these approaches are often underpowered 
and computationally intractable for even a moderately large number of pairs, while empirical 
Bayesian approach provides an FDR controlled list of interesting pairs from a high-throughput 
experiment measuring expression in two or more conditions without sacrificing power. Hut-
tenhower et al. (2006) applied this method of Bayesian framework to combine studies for 
pairwise meta-correlation and predicted functional relationships. Besides, gene associations 
are also commonly analyzed with the STRING database. The co-regulation of genes across 
diverse experimental conditions, as measured by using microarray analysis, which is covered 
in the STRING database, can be a predictor of functional associations (Stuart et al., 2003). In 
addition, gene interaction analysis is also achieved in the co-occurrence pattern of gene altera-
tions with the OR formula using the cBioPortal by storing cancer experimental results across 
multiple genomic data types. Here, we analyzed and compared DEG interactions using the EB 
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approach, and the resources of the STRING database and the cBioPortal software, which was 
comprehensive from the aspects of gene co-expression, mutation and protein associations.

    Genetic interactions have proven highly effective for determining gene functions 
and identifying groups of genes that encode proteins in the same pathway or complex. In-
teractome network maps have been used to demonstrate gene interactions visually between 
biological components. Such gene association networks have allowed the generation of novel 
hypotheses about potential functional roles of genes or about their involvement in phenotype-
specific cellular processes (Iancu et al., 2012). In this network, its analyses typically work 
with the gene-gene interaction matrix, which graphically represents the correlation between 
each pair of genes in the study. Here, gene co-expression, PPI and co-occurrence networks 
were constructed with three different methods, respectively. From the point of the flaw of EB 
model with weaker accuracy and STRING existing prediction factor, a new gene interaction 
network was produced by assembling the scores of gene pairs of the three methods. The four 
networks were all highly nonrandom, where the clustering coefficient, the mean shortest path 
and the fitting coefficient R2 according to the power law (y = axb) were evaluated. The network 
constructed by combining the scores of three methods was prior to showing the scale-free and 
small world network, which may be a new approach to analyze gene interactions.

     Interestingly, FGF1, CALB1, FABP1, UMOD, and DIO1 were identified as com-
mon genes in four networks, and three of them were closely associated with tumor. FGF1 is 
involved in pathological processes such as restenosis and tumor formation. It is frequently 
upregulated in hepatocellular carcinoma and its overexpression may be a consequence rather 
than contributor to hepatoma progression (Prudovsky et al., 2003; Huang et al., 2006). CALB1 
is preferentially expressed in dopamine neurons that are spared from degeneration in Parkin-
son’s disease (Airaksinen et al., 1997). It is also expressed in an insulin-producing tumor cell 
line derived from a radiation induced rat insulinoma  (Pochet et al., 1989). DIO1 activity is 
an important determinant of thyroid status; it could help to better define a tumor signature for 
thyroid tumors (Arnaldi et al., 2005). All these genes may be useful for future investigations 
of molecular biomarker. Functional studies are necessary to elucidate the role of these genes in 
kidney cancer pathogenesis and determine their potential as molecular targets for the develop-
ment of new kidney cancer therapeutic approaches. 
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