
©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (2): 6744-6761 (2015)

Multi-objective optimization in systematic 
conservation planning and the representation 
of genetic variability among populations

S. Schlottfeldt1, M.E.M.T. Walter1, A.C.P. L.F. Carvalho2, T.N. Soares3, 
M.P.C. Telles3, R.D. Loyola4 and J.A.F. Diniz-Filho4

1Departamento de Ciência da Computação, 
Instituto de Ciências Exatas, Universidade de Brasília, Brasília, DF, Brasil 
2Departamento de Ciência da Computação, Universidade de São Paulo, 
São Carlos, SP, Brasil
3Departamento de Biologia Geral, Instituto de Ciências Biológicas, 
Universidade Federal de Goiás, Goiânia, GO, Brasil
4Departamento de Ecologia, Instituto de Ciências Biológicas, 
Universidade Federal de Goiás, Goiânia, GO, Brasil

Corresponding author: S. Schlottfeldt
E-mail: shanass@unb.br

Genet. Mol. Res. 14 (2): 6744-6761 (2015)
Received August 21, 2014
Accepted February 13, 2015
Published June 18, 2015
DOI http://dx.doi.org/10.4238/2015.June.18.18

ABSTRACT. Biodiversity crises have led scientists to develop 
strategies for achieving conservation goals. The underlying principle of 
these strategies lies in systematic conservation planning (SCP), in which 
there are at least 2 conflicting objectives, making it a good candidate 
for multi-objective optimization. Although SCP is typically applied 
at the species level (or hierarchically higher), it can be used at lower 
hierarchical levels, such as using alleles as basic units for analysis, for 
conservation genetics. Here, we propose a method of SCP using a multi-
objective approach. We used non-dominated sorting genetic algorithm 
II in order to identify the smallest set of local populations of Dipteryx 
alata (baru) (a Brazilian Cerrado species) for conservation, representing 
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the known genetic diversity and using allele frequency information 
associated with heterozygosity and Hardy-Weinberg equilibrium. We 
worked in 3 variations for the problem. First, we reproduced a previous 
experiment, but using a multi-objective approach. We found that the 
smallest set of populations needed to represent all alleles under study was 
7, corroborating the results of the previous study, but with more distinct 
solutions. In the 2nd and 3rd variations, we performed simultaneous 
optimization of 4 and 5 objectives, respectively. We found similar but 
refined results for 7 populations, and a larger portfolio considering intra-
specific diversity and persistence with populations ranging from 8-22. 
This is the first study to apply multi-objective algorithms to an SCP 
problem using alleles at the population level as basic units for analysis.

Key words: Conservation planning; Multi-objective optimization; 
Metaheuristics; Genetic variability; Biodiversity

INTRODUCTION

The current biodiversity crisis is forcing scientists to develop systematic strategies for 
effectively achieving conservation goals. The overall underlying principle of this strategy lies 
in systematic conservation planning (SCP), which involves a series of decisions in order to de-
termine the most cost-effective method of investing in conservation measures (Margules and 
Pressey, 2000). The overall reasoning is to develop a protocol in which a set of conservation 
targets and goals are defined and achieved in the most objective and rational manner possible. 

Although SCP is typically applied to species or even hierarchically higher levels 
(Brooks et al., 2004; Pressey, 2004), it is possible to solve a series of problems at much lower 
hierarchical level. Alleles from molecular analysis at the population level can be used as basic 
units in the context of conservation genetics (Diniz-Filho and Telles, 2002; Diniz-Filho et al., 
2012) based on the idea of intra-specific conservation prioritization. This idea has its roots in 
the early 1990’s in the debate of evolutionary significant units or management units for con-
servation (Fraser and Bernatchez, 2001). Although the definition of evolutionary significant 
units or management units provides the concept of intra-specific units (e.g., subspecies or local 
varieties) that can be used as conservation targets, it is not able to deal with continuous genetic 
variation at the species level (Diniz-Filho and Telles, 2002) and, more importantly, does not 
provide a method for identifying intra-specific variation units or components that should be 
prioritized in the context of SCP.

The complementarity concept is in the foundation of SCP and is mathematically mod-
eled by the set covering problem, a classical problem in algorithm complexity theory that was 
shown to be NP-complete (Cormen et al., 2001). Understanding that a problem is NP-complete 
provides an indication of the difficulty of the problem. In general, it is not difficult to verify 
whether an answer to an NP-complete problem is correct. However, whether the solution is effi-
cient must be determined by testing all possible options until finding one that solves the problem 
correctly. NP-complete problems arise in several real-world applications and, in practice, know-
ing that a problem is NP-complete can prevent the spending of time attempting to determine a 
polynomial-time algorithm to solve it exactly when such an algorithm likely does not exist.
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Independently of the hierarchical level, the SCP problem can be stated as follows: to 
select a set of sites (among several available sites) to minimize the cost of conservation and, 
at the same time, maximize the natural feature representation, which can be modeled by the 
minimum set covering problem. This approach presents at least 2 conflicting objectives, as 
one is usually interested in the conservation of some biological features (e.g., alleles, species, 
or any other biological unit) subjected to conflicting interests in land use (e.g., human popu-
lation living in the region, price of land, agricultural potential of the area, or probability of 
habitat loss). In this context, the conflicting objectives make the problem a perfect candidate 
for multi-objective optimization. Furthermore, other parameters can be considered by add-
ing socio-economical costs to the areas or by minimizing their spatial aggregation; this adds 
dimensions to SCP, which is already multi-objective in its origin. Indeed, several real world 
problems involve simultaneous optimization of multiple conflicting objectives, which should 
be analyzed as independent dimensions rather than combined into a single weighted function. 

These optimization problems with more than one objective are referred to as vector 
optimization or multi-objective problems (Zitzler et al., 2002; Coello-Coello et al., 2007). 
In these cases, there is no single optimal solution, but rather a set of solutions that should be 
considered to be equivalent in the absence of information regarding the relevance of each 
objective relative to the others (Fonseca and Fleming, 1995). Such solutions, known as non-
dominated, are optimal in the sense that none can be declared the best when all objectives are 
considered (Zitzler et al., 2002). These solutions are called Pareto optimal solutions, and the 
graph of the solutions form the Pareto front (Coello-Coello et al., 2007).

Multi-objective evolutionary algorithms (MOEA) have been successfully applied for 
multi-objective problems. The positive aspects of MOEA include efficient solution space ex-
ploration, parallelism, ability to escape of local optima, capacity to handle complex problems 
for which it is not possible (or at least it is difficult) to obtain a detailed description, and they 
are less susceptible to the shape or continuity of functions (Coello-Coello et al., 2007).

In SCP, the development of algorithms and tools for decision support began in the 
early 1980s (Sarkar, 2012) and became an important element in conservation biology research. 
Several approaches have been suggested over the past decades, ranging from a simple scoring 
system to more complex optimization techniques (Table 1).

In their origin, such algorithms sequentially select complementary sites until all spe-
cies are represented in typical greedy algorithm behavior. However, greedy algorithms are not 
guaranteed to identify optimal solutions (Possingham et al., 2000). Nevertheless, this class 
of algorithms has distinguished importance in the development of algorithms and tools for 
SCP. In contrast, the exact approach (which ensures the production of optimal solutions) was 
initially discussed by Cocks and Baird in 1989 (Sarkar, 2012). However, as SCP is an NP-
complete problem, even the available software packages computing exact algorithms cannot 
solve some large data sets (Pressey et al., 1996), which is a common limitation in the SCP 
context. Because of these characteristics, another approach used for SCP involves metaheuris-
tics, a method for solving an optimization problem using a combination of random choices 
and historical knowledge of previous results computed by the method, such that the heuristic 
explores the solution space. However, it is worth noting that this technique does not guaran-
tee optimal solutions. The mainly metaheuristics used for SCP include simulated annealing 
[SPEXAN (Ball, 2000), SITES (Possingham et al., 2000), and Marxan (Ardron et al., 2010)], 
as well as the tabu search [ConsNet (Ciarleglio, 2010)].
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In this study, we propose a more sophisticated and general solution for the SCP prob-
lem based on multi-objective optimization, which allowed us to cope with more than one 
objective. This provided more flexibility by including additional objectives, adding more com-
plexity, and increasing the power of decision. In particular, we used non-dominated sorting 
genetic algorithm II (NSGA-II, a state-of-the-art MOEA) to search for optimal solutions. Our 
hypothesis was that NSGA-II could identify the smallest set of local populations of Dipteryx 
alata (also known as baru) that should be conserved to represent the known genetic diversity 
of this Brazilian Cerrado species, thus focusing on the in situ strategy. However, rather than 
simply representing the known alleles, the proposed approach begins with allele frequency 
information and incorporates information about heterozygosity in the local population and 
Hardy-Weinberg equilibrium. By including these 2 characteristics, local populations can be 
better represented in terms of their genetic diversity, allowing identification of sets of popula-
tions with a higher probability of persistence overtime. This is the first study to apply multi-
objective optimization algorithms to an SCP problem with more than 2 objectives using alleles 
from molecular analysis at the population level as basic units.

MATERIAL AND METHODS

Data

We used data from D. alata (a Fabaceae tree species widely distributed and endemic 
to Brazilian Cerrado) consisting of 55 alleles from 9 microsatellite loci (Table 2) coding for a 
total of 642 individual trees sampled in 25 local populations distributed throughout species’ 
geographical range (Figure 1), with sample sizes within the local populations ranging from 
12-32 (Tables 3 and 4) (Diniz-Filho et al., 2012; Soares et al., 2012).

Based on the sampled data, we produced 4 matrices used as input for our MOEA:
1) Matrix A: an allele-by-site presence-absence matrix. Here, the population can be 

understood as a site, as each sampled tree was GPS-georeferenced. In matrix Apxa, p = 25 
(populations), a = 55 (alleles), and aij represents the occurrence of allele j in population i.

2) Matrix B: allele frequencies within local populations, where allele frequency over 
population was normalized in order to minimize possible distortions due to different numbers of 
individuals sampled among populations (i.e. differences in the sample sizes). In matrix Bpxa, p = 
25 (populations), a = 55 (alleles), and bij is the normalized frequency of allele j in population i.

3) Matrix C: heterozygosity per population per locus. In matrix Cpxl, p = 25 (popula-
tions), l = 9 (loci), and cij represents the amount of heterozygosity of locus j in population i.

4) Matrix D: we used the Hardy-Weinberg equilibrium (HWE) concept which states 
that in the absence of evolutionary pressure, allele and genotype frequencies will remain the 
same along generations. The matrix D is composed of the probabilities of chi-square tests for 
the HWE of each locus in each local population, such that higher P values indicate a popula-
tion closer to equilibrium. In matrix Dpxl, p = 25 (populations), l = 9 (loci), and dij represents 
the expected HWE of locus j in population i.

Modeling

Our problem was to identify solutions with the smallest set of D. alata local popula-
tions representing the genetic diversity of the species for its conservation and persistence. We 
considered 3 variations for the problem as follows.
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	 Bm164	 DaE06	 DaE12	 DaE20	 DaE34	 DaE41	 DaE63	 DaE67	 DaE46

	 156	 212	 216	 146	 118	 208	 170	 104	 244	
	 158	 216	 218	 154	 120	 210	 176	 106	 247	
	 165	 220	 219	 156	 122	 214		  108	 250	
	 168	 	 220	 158	 124			   110	 253	
	 170	 	 222	 	 126	 		  112	 	
	 174	 			   128	 		  114	 	
	 176	 			   130	 		  116	 	
	 178	 			   132	 		  118	 	
					     134	 		  120	 	
					     136	 		  122	 	
					     138	 		  124	 	
					     142	 				  
					     146	 				  
					     148	 				  
					     150	 				    Total
Total	 8	 3	 5	 4	   15	 3	 2	 11	 4	 55

Table 2. Alleles identified from 9 sequenced microsatellite from Dipteryx alata.

Figure 1. Geographic location of the 25 local populations of Dipteryx alata in Central Brazil analyzed using 
SCP methods based on microsatellite allelic variation. The region shown in dark tone remains covered by natural 
remnants of Cerrado vegetation.
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Variation 1: Two objective optimization (2-D optimization)

In this first variation, we reproduced the experiment of Diniz-Filho et al. (2012), but 
using a multi-objective optimization approach. We applied NSGA-II rather than simulated an-
nealing. The latter was originally used by Diniz-Filho et al. (2012) and employs a monobjec-
tive optimization approach while dealing with SCP.

The purpose of this first problem variation was to determine the smallest set of D. 
alata local populations (Equation 1) that should be preserved in order to represent the genetic 
diversity of the species, targeting its in situ conservation, i.e. each 1 of the 55 alleles should be 
represented at least once (Equation 2).

Using matrix A, described in Subsection Data, a candidate solution for the problem is 
a vector x = {x1, x2, …, x24, x25}, where xi∈ {0, 1}, such that xi = 1, if population i is selected 
to compose the solution; or 0, otherwise.

Population No.	 Population name	 No. of sampled individuals

  1	 CMT	   32
  2	 ABMT	   32
  3	 PGO	   32
  4	 SMS	   31
  5	 AMS	   32
  6	 ATO	   32
  7	 SMGO	   32
  8	 LGO	   32
  9	 ISP	   31
10	 MAMG	   32
11	 ENGO	   12
12	 STGO	   12
13	 AMG	   32
14	 PMG	   32
15	 PMS	   13
16	 PCMS	   13
17	 CMS	   13
18	 IGO	   13
19	 RAMT	   27
20	 RAGO	   37
21	 JGO	   32
22	 NTO	   12
23	 ARTO	   15
24	 AQMS	   31
25	 CAMT	   30
Total	      -	 642

Table 3. Populations and number of sampled individuals.

Sampled tree									                     Allele

	           Bm164	          DaE06	           DaE12	          DaE20	           DaE34	          DaE41	          DaE63		           DaE67	            DaE46

1CMT	 158	 158	 216	 216	 220	 220	 154	 154	 110	 110	 126	 126	 208	 208	 176	 170	 253	 253
2CMT	 170	 158	 216	 216	 220	 220	 154	 154	 116	 114	 126	 126	 210	 210	 176	 170	 253	 253
     .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .
     .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .
     .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .
29CAMT	 176	 174	 220	 220	 220	 218	 154	 154	 114	 110	 132	 132	 208	 208	 176	 176	 250	 250
30CAMT	 156	 156	 220	 220	 220	 218	 154	 154	 114	 110	 124	 124	 208	 208	 176	 176	 250	 250

Table 4. Partial and schematic representation of collected data from the 642 individual trees sampled in 25 local 
populations throughout Dipteryx alata’s geographical range.
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The aim was to obtain:

(Equation 1)

Subject to:

(Equation 2)

where p = 25 (populations) and n = 55 (alleles).
Regarding the multi-objective optimization aproach, there are 2 objectives to be optimized:
1) Minimize the number of selected populations and
2) Maximize the number of alleles.
For simplicity, in the 2nd objective function, we used the number of missing alleles 

(those not present in the solution); therefore we worked with 2 minimization functions (Equa-
tions 3 and 4):

(Equation 3)

(Equation 4)

Variation 2: 4 objective optimization (4-D optimization)

Variation 1 solutions ensure that all 55 alleles would be represented, but not their per-
sistence over time. One attempt to cope with this limitation would be to maximize the allele’s 
frequency, while simultaneously prioritizing the presence of heterozygosity or HWE in the set 
of selected populations for conservation.

Therefore, we obtained 3 more objectives (Equations 5-7) that were combined and 
added to Equations 3 and 4 in order to obtain a more consistent and refined solution to predict 
D. alata persistence:

1) Using matrix B to maximize the total allele frequency (Equation 5).

(Equation 5)
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2) Using matrix C to maximize the heterozygosity of local populations:

(Equation 6)

(Equation 7)

2) Using matrix D to maximize the HWE level in populations (Equation 7):

Each equation (each dimension) is an objective function that can be optimized. We 
executed 10,000 independently runs of NSGA-II (see Subsection Implementation) for each 
combination of the 4 objectives for optimization as follows:

1) Equations 3, 4, 5, and 6; 
2) Equations 3, 4, 5, and 7; 

Variation 3: 5 objective optimization (5-D optimization)

In this variation, we performed the optimization considering all the previous stated 
objectives. Five objectives were optimized simultaneously, including: number of populations, 
number of missing alleles, allele frequency, heterozygosity, and HWE (Equations 3-7).

NSGA-II

Evolutionary algorithms (EA) are inspired by biological evolution and use operators 
based on mutation, recombination, and natural selection (Bäck, 1996). Candidate solutions in 
EA play the role of individuals in a population. The results of previous studies suggest that EA 
are particularly appropriated for finding Pareto optimal solutions, particularly because they 
can efficiently process a set of solutions in parallel. Fonseca and Fleming (1995) as well as 
Valenzuela-Rendón (1998) suggested that multi-objective optimization is a research area in 
which EA can produce better results than traditional optimization techniques.

We used the NSGA-II (Deb et al., 2002), a state-of-the-art in MOEA (López-Jai-
mes and Coello-Coello, 2009). NSGA-II is a fast and elitist-based algorithm, in which 
individuals are classified based on a rank order, built on a dominance relationship, and a 
crowding operator. The best individuals are selected and evolutionary operators (crossover 
and mutation) are applied.

Briefly, the population is randomly initialized; prior to selection, the population is 
separated into categories (ranks) constructed based on dominance. For each non-dominated 
individual, a rank value of 1 is assigned, meaning that it belongs to the 1st Pareto front, which 
allows individuals to have the same potential to be selected. These individuals are removed 
from the population and the process of classifying the remaining individuals in their respective 
front ranks continues, e.g., individuals in the 2nd front receive a rank value of 2, and so on. 
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After assigning a rank to each individual, a value of crowding (an agglomeration comparison 
operator that allows prioritizing less crowded regions of solution space), is calculated. Indi-
viduals are ranked based in ascending order of their rank values and in descending order of 
their crowding values. The best individuals are selected and crossover and mutation operators 
are applied. The process continues until a stop condition is reached, e.g., a specified number 
of generations or a specified number of objective function evaluations.

Implementation

Candidate solutions were encoded as a binary vector of length L, where L is the num-
ber of populations (in this case, 25). Each element of the vector stores a 0 or 1 value, where 
1 indicates that the corresponding population was selected to integrate a candidate solution; 
otherwise, a value of 0 is used.

At each execution, 500 initial solutions were randomly generated. These solutions 
were then evolved using NSGA-II, implemented in Matlab®.

Before running the experiments, we used a sample set to empirically estimate the most 
suitable parameter values, which were set to: population size = 500 individuals; crossover 
operator = single point crossover; crossover probability = 0.90; mutation probability = 1/L 
(where L is the number of populations); selection by binary tournament; mutation rate = 0.5; 
and number of objective functions evaluation = 100,000.

After obtaining the configuration parameters, 10,000 runs of NSGA-II for each prob-
lem variation (described in 2.2.1) were carried out. The tests were performed on 2 servers, a 
Hewlett-PackardProLiant DL585 G7, 4xAMD 2.8Ghz 16-cores, 512 GB RAM and a Hewlett-
Packard ProLiant DL385p Gen8, 2xAMD 2.8Ghz 16-cores, 256 GB RAM.

Null model

A null model is an attempt to generate value distributions for a given variable of 
interest in the absence of the process under study. In experimental sciences, this allows for 
a “controlled situation” (Paes and Blinder, 1995; Gotelli and Graves, 1996). The main goal 
of using a null model is to show that the experimental results would not have emerged from 
randomly generated data. In this study, 10,000 populations of 500 individuals (in a total of 
5,000,000 individuals) were randomly generated in order to determine whether the same 
results would be found without the execution of NSGA-II.

RESULTS

Variation 1: 2-D optimization

We found that the smallest population set needed to represent all 55 alleles had size 7 
(Figure 2), corroborating results of Diniz-Filho et al. (2012). However, it must be highlighted 
that while the previous study found only 2 distinct solutions, we found 6 different solutions 
for the investigated problem using multi-objective optimization. Four were new solutions (S3, 
S4, S5, S6) and 2 were the same as those determined by Diniz-Filho et al. (2012) (S1* and 
S2*) (Table 5).
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Figure 2. Pareto front obtained for problem Variation 1. Because there were 2 objectives (number of selected 
populations and of missing alleles), the results were plotted on a 2-D graph.

Population #	 Population name	 S1*	 S2*	 S3	 S4	 S5	 S6	 Irreplaceability*	 Irreplaceability

  1	 CMT	 1	 1	 1	 1	 1	 1	 1.00	 1.00
  2	 ABMT	 0	 0	 0	 0	 0	 0	 0.00	 0.00
  3	 PGO	 0	 0	 0	 0	 0	 0	 0.00	 0.00
  4	 SMS	 0	 0	 0	 0	 0	 1	 0.00	 0.17
  5	 AMS	 1	 1	 1	 1	 1	 1	 1.00	 1.00
  6	 ATO	 0	 0	 0	 0	 0	 0	 0.00	 0.00
  7	 SMGO	 0	 0	 0	 0	 1	 0	 0.05	 0.17
  8	 LGO	 0	 0	 0	 0	 0	 0	 0.00	 0.00
  9	 ISP	 0	 0	 0	 0	 0	 0	 0.00	 0.00
10	 MAMG	 0	 0	 0	 0	 0	 0	 0.00	 0.00
11	 ENGO	 0	 0	 0	 0	 0	 0	 0.00	 0.00
12	 STGO	 0	 0	 0	 0	 0	 0	 0.00	 0.00
13	 AMG	 0	 0	 0	 0	 0	 0	 0.00	 0.00
14	 PMG	 0	 0	 0	 0	 0	 0	 0.00	 0.00
15	 PMS	 0	 1	 0	 1	 0	 0	 0.50	 0.33
16	 PCMS	 0	 0	 0	 0	 0	 0	 0.05	 0.00
17	 CMS	 1	 1	 1	 1	 1	 1	 0.95	 1.00
18	 IGO	 1	 0	 1	 0	 0	 0	 0.50	 0.33
19	 RAMT	 1	 1	 1	 1	 1	 1	 1.00	 1.00
20	 RAGO	 0	 0	 0	 0	 0	 0	 0.00	 0.00
21	 JGO	 0	 0	 1	 1	 1	 1	 0.57	 0.67
22	 NTO	 0	 0	 0	 0	 0	 0	 0.00	 0.00
23	 ARTO	 0	 0	 0	 0	 0	 0	 0.00	 0.00
24	 AQMS	 1	 1	 0	 0	 0	 0	 0.43	 0.33
25	 CAMT	 1	 1	 1	 1	 1	 1	 1.00	 1.00
 -	 Total	 7	 7	 7	 7	 7	 7	 -	 -

*Results found by Diniz-Filho et al. (2012).

Table 5. Six solutions found for problem Variation 1. Solutions are Si, where i = 1-6. In columns Si, a value 1 
indicates that the population j (j = 1-25) was included in the solution; 0, otherwise.
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Irreplaceability values, shown in the last 2 columns of Table 5, were obtained by con-
sidering the frequency by which a given population appeared in the solutions considering all 
determined solutions, including 6 in our experiment and 2 found by Diniz-Filho et al. (2012). 

Local populations converging to 1 (1-CMT, 5-AMS, 17-CMS, 19-RAMT, 25-CAMT) 
were often irreplaceable, so that if they were lost, the conservation goal would not be achieved.

Variations 2 and 3: 4-D and 5-D optimizations

Results for 4 and 5 simultaneously optimized objectives were similar (Table 6), in-
cluding the irreplaceability values shown in Figure 3.

No. of alleles 	 No. of selected	 (Solution) selected populations	                    Variation 2		  Variation 3
(No. of missing alleles)	 populations
			   4-D Heterozygosity	 4-D HWE	 5-D Heterozygosity & HWE
	 7	 (S1) 1-5-17-18-19-24-25	 X	 X	 X
55(0)		  (S2) 1-5-15-17-19-24-25	 X	 X	 X
		  (S3) 1-5-17-18-19-21-25	 X	 X	 X
		  (S4) 1-5-15-17-19-21-25	 X	 X	 X
	 Subtotal		  4	 4	 4
55(0)	 8	 1-2-5-15-17-19-21-25	 X	 X	 X
		  1-2-5-15-17-19-24-25	 X	 X	 X
		  1-2-5-17-18-19-21-25	 X	 X	 X
		  1-2-5-17-18-19-24-25	 X	 X	 X
		  1-3-5-17-18-19-24-25	 X	 X	 X
		  1-4-5-15-17-19-21-25	 X	 X	 X
		  1-4-5-15-17-19-24-25	 X	 X	 X
		  1-4-5-17-18-19-21-25	 X	 X	 X
		  1-4-5-17-18-19-24-25	 X	 X	 X
		  1-5-9-17-18-19-24-25	 X	 X	 X
		  1-5-10-15-17-19-21-25	 X	 X	 X
		  1-5-10-15-17-19-24-25	 X	 X	 X
		  1-5-10-17-18-19-24-25	 X	 X	 X
		  1-5-13-15-17-19-21-25	 X	 X	 X
		  1-5-7-15-16-19-24-25		  X	 X
		  1-5-7-16-18-19-24-25	 X		  X
		  1-5-10-17-18-19-21-25	 X	 X	
		  1-5-12-15-17-19-24-25	 X		  X
		  1-5-12-17-18-19-21-25	 X	 X	
		  1-5-13-15-17-19-24-25	 X		  X
		  1-5-14-17-18-19-24-25		  X	 X
		  1-5-15-17-18-19-21-25	 X		  X
		  1-5-15-17-19-22-24-25	 X		  X
		  1-5-16-17-18-19-24-25		  X	 X
		  1-3-5-15-17-19-21-25	 X		
		  1-3-5-17-18-19-21-25		  X	
		  1-5-7-15-17-19-24-25			   X
		  1-5-8-17-18-19-24-25		  X	
		  1-5-9-15-17-19-24-25	 X		
		  1-5-9-17-18-19-21-25	 X		
		  1-5-11-15-17-19-24-25			   X
		  1-5-11-17-18-19-24-25			   X
		  1-5-12-17-18-19-24-25			   X
		  1-5-14-15-17-19-21-25		  X	
		  1-5-15-16-17-19-24-25	 X		
		  1-5-15-17-19-20-24-25	 X		
		  1-5-15-17-19-21-22-25	 X		
		  1-5-15-17-19-21-23-25			   X
		  1-5-17-18-19-20-21-25		  X	
		  1-5-17-18-19-21-22-25		  X	
		  1-5-17-18-19-21-24-25			   X
	 Subtotal		  27	 24	 28
	 Total		  31	 28	 32

The optimization objectives are: 1) minimize number of selected population (set size); 2) minimize number of missing 
alleles; 3) maximize allele frequency; 4) maximize heterozygosity; 5) maximize HWE. Solutions Si, where i = 1-4, are 
the same corresponding to solutions on Table 5. X indicates that the solution was found by the corresponding approach. 

Table 6. Partial results for minimum set of selected populations found by simultaneously optimizing 4 and 5 objectives.
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It is worth note that, in Variation 1, 7 was the minimum set size necessary to represent 
all 55 alleles, but because there were additional objectives, we used multi-objective optimiza-
tion to obtain a much larger portfolio of solutions with populations ranging from 7-22 (only 
the solutions with a set of 7 and 8 populations are shown in Table 6), offering decision-makers 
a larger spectrum of options that fulfill the stated objectives.

We observed no hierarchy among the results shown in Table 6, indicating that all 
found solutions are optimal in the considered context, i.e., none can be declared the best when 
all optimized objectives are considered.

For 7 selected populations, both Variations 2 and 3 (4-D and 5-D optimizations) identi-
fied 4 from the 6 solutions identified in Variation 1, corresponding to S1, S2, S3, and S4 shown in 
Table 5. These 4 solutions are shown graphically in the right lower corner of the graph in Figure 4.

Figure 3. Irreplaceability values for (A) Variation 2 (4-D optimization) with heterozygosity as the 4th objective; (B) 
Variation 2 with HWE as the 4th objective and (C) Variation 3 (5-D optimization). Irreplaceability values were based 
on the frequency that a given population appeared in distinct solutions. A value converging to 1 means that the given 
local population was generally irreplaceable, in the sense that if it was not present in the solution, the conservation 
goal may not be achieved. Experimental irreplaceability values found for Variations 2 and 3 were very similar.

A B

C
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Table 7 shows the percentages for solutions with 7 populations found by optimization 
performed in Variations 2 and 3.

Figure 4. Pareto front obtained for problem Variation 3 (5-D optimization). There were 5 objectives (number of 
populations, allele frequency, HWE, heterozygosity, and number of missing alleles); the first 3 are plotted in this 
3-D graph. Solutions with 7 populations are shown on the lower right corner (as indicated). It is worth note that the 
value for missing alleles of all solutions in this Pareto front was 0.

Solution	                                                         Variation 2		  Variation 3

	 4-D	 4-D	 5-D
	 Heterozygosity	 HWE	 Heterozygosity & HWE

S1	 22.78%	 25.26%	   1.58%
S2	 20.06%	 24.53%	 98.34%
S3	 31.44%	 24.60%	   0.02%
S4	 25.72%	 25.60%	   0.05%

Table 7. Distribution (in percentage) of the solutions with 7 populations found by 4-D and 5-D optimizations. 
Solution Si, where i = 1-4, are the same corresponding to solutions on Table 5.

Null model

From 5,000,000 randomly generated individuals (10,000 populations of 500 indi-
viduals each), we obtained 351,547 with 7 populations (lower bound), approximately 7% of 
all randomly generated individuals. Furthermore, when compared to the results obtained for 
problem Variation 1, only 3 of the 351,547 results represented all 55 alleles (corresponding to 
0.00006% of the randomly generated individuals). This indicates that NSGA-II experimental 
results were not generated by chance.
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For each randomly generated individual, we determined heterozygosity and HWE 
values. Except for the 3 solutions with no missing alleles, the other 351,544 randomly gener-
ated solutions with 7 populations (number of populations presented in Table 6), heterozygosity 
and HWE values were worse (lesser) when compared to those found using NSGA-II.

DISCUSSION

The most popular methods, algorithms, and tools used for the SCP problem involve a 
monobjective approach; they aggregate the distinct objectives into a single function. Hence, 
despite the clear multi-objective aspect of SCP, optimization models often treat this as monob-
jective by assigning different weights to different objectives of the problem in order to ag-
gregate the objectives into a single objective function, known as a fitness function (Zitzler et 
al., 2002). However, when 2 criteria represent different value systems, it may be impossible 
to combine such criteria in a meaningful way (e.g., comparing the preservation of endangered 
species and the promotion of economic development). A single objective function can result 
in the association of utterly disparate elements, requiring assumptions that decision-makers 
may consider inadequate and even leading to inaccurate results (Ciarleglio et al., 2010). This 
prompted us to use a multi-objective approach for solving SCP.

Moreover, it is not a trivial task to properly weight different conflicting objectives in 
order to combine them accordingly, and it is generally necessary to have expert knowledge 
that is not always available. In fact, depending on how the objectives are associated to com-
pose the unique fitness function, one may obtain completely different results.

By applying multi-objective optimization, it is possible to overcome these issues be-
cause the objectives can simultaneously be optimized independently from one another.

Diniz-Filho et al. (2012) recently proposed an explicit complementary approach that 
could be used to optimize conservation of genetic variability, expressed as allelic variation 
(presence-absence of alleles) derived from microsatellite loci, and solved an SCP problem for 
the conservation of D. alata using a simulated annealing algorithm.

Nonetheless, these previous attempts were monobjective as well as used only the 
presence-absence of alleles in local populations, which is not as informative as using the al-
lele frequencies directly. This approach more properly reflects the ecological and evolutionary 
processes driving genetic diversity in local populations and may be more related to population 
persistence. Using allele frequencies is equivalent to applying more complex characteristics of 
a species, such as abundance and environmental suitability in SCP higher hierarchical levels, 
potentially improving the long-term persistence of the conservation networks and providing 
the opportunity to test the multi-objective method in this new conservation problem at lower 
hierarchical level than the species level.

As stated above, in standard applications of SCP using software such as Marxan and 
based on simulated annealing (Table 1), the constraints are typically expressed as weights, ob-
tained from a complex function combining several conflicting attributes. Hence, the approach 
proposed here, in addition to being the first to use an evolutionary algorithm to address the 
SCP problem, is also the first to use a legitimate multi-objective approach. This allows more 
flexibility by including additional decision objectives, as well as adds more complexity to 
results while increasing decision-maker options.

In Variation 1, developed to reproduce the experiment of Diniz-Filho et al. (2012), we 
identified a larger number of distinct solutions (6 rather than 2 as previously reported).
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For Variations 2 and 3, we found similar results and significantly expanded the port-
folio of solutions when considering options globally. Thus, in Variation 1, the method was not 
able to identify new options with more than 7 populations. By including a larger number of 
objectives, we introduced a degree of flexibility that allowed the identification of other solu-
tions with more populations but with optimized allele frequency, heterozygosity, or HWE. 
Although it is desirable to have fewer populations, this is advantageous because a minimal 
set of populations representing all alleles is not necessarily the one with the best results when 
considering intra-specific diversity and persistence.

A key point is that Variations 2 and 3 were able to refine the Variation 1 solutions, indi-
cating the optimization of persistence features (S1-S4) (Table 6). Additionally, the distribution 
(in percentage) of solutions with 7 populations found using 4-D optimizations (Table 7 2nd and 
3rd columns) showed no significant differences between the results obtained by optimization 
performed in Variation 2, as they were similarly distributed from S1-S4. However, for 5-D opti-
mization (Table 7 last column), although there was no hierarchy among these solutions (S1-S4) 
in the sense that they were optimal when all optimized objectives were considered, the results for 
Variation 3 clearly highlighted S2, as S2 corresponds to 98.34% of the solutions with 7 popula-
tions. This result suggests that optimization of 5 objectives can be used to further refine the results.

As the decision-makers’ portfolio increases considerably, the method can indicate the 
most adequate options in this portfolio, which is advantageous.

In addition, it appears that the simultaneous optimization of heterozygosity and HWE 
in Variation 3 is advantageous, as applying it allowed the method to identify more distinct 
solutions for 8 populations. There were 28 solutions compared to 27 and 24 from Variation 2, 
which used heterozygosity and HWE, respectively, as the 4th objective (Table 6).

Considering that for 7 populations, the same results were found using 4-D and 5-D op-
timizations, it can be said that heterozygosity and HWE guided the set of solutions in the same 
direction. For 8 populations, of the 41 distinct solutions, 14 (34%) were determined using the 
4-D and the 5-D optimizations, and 24 (58%) by at least 2 of the 3 optimizations performed.

The results from the null model assured that solutions obtained using NSGA-II did not 
emerge randomly. Only 3 results from the null model included 7 populations and all 55 alleles, 
while more than 65,000 solutions retrieved using NSGA-II presented these characteristics.

The possibility of dealing with these more complex situations clearly shows the ad-
vantage of our method as compared with the standard approach based on simulated annealing, 
as implemented by Diniz-Filho et al. (2012).

Considering that the most commonly used tools for SCP apply algorithms on a 
monobjective approach, our results show that dealing with various conflicting objectives 
in more than one dimension (i.e. using multi-objective optimization) allows for amore 
sophisticated and general solution to the SCP problem. This can be observed by the variety 
of different solutions generated using our method (instead of a single point generated using 
monobjective methods), thus improving the decision-maker support.

In conclusion, we used a multi-objective approach to solve variations of the SCP 
problem with more than two objectives, which added complexity and increased the decision-
makers options. We showed that a multi-objective algorithm is more powerful and opens more 
possibilities than the methods previously used, such as simulated annealing.

We implemented a more refined search for optimal solutions to the problem of finding 
the smallest set of local populations of D. alata that should be conserved in order to represent 
genetic diversity based on allele frequency information associated with heterozygosity and 
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Hardy-Weinberg equilibrium. This was the first time these parameters (objectives) were used 
in the context of SCP. 

We found that the smallest set of populations needed to represent all alleles under 
study was 7, corroborating the 2 solutions determined by Diniz-Filho et al. (2012), but we 
obtained more options of distinct solutions (the previous 2 solutions as well as 4 additional 
solutions, for a total of 6). By optimizing 4 and 5 objectives simultaneously (4-D and 5-D 
optimizations), we found 4 solutions for 7 populations, refining the 6 previously determined 
solutions. Additionally, we obtained a larger portfolio in terms of intra-specific diversity and 
persistence with populations ranging from 8-22. In particular, for 8 populations we found 41 
solutions.

Although additional experiments should be conducted to improve the NSGA-II fitness 
function in a more precise and controlled manner, our results demonstrate the advantages of 
the new approach with respect to previous solutions. Additionally, this was the first attempt to 
apply multi-objective algorithms to an SCP problem with more than 2 dimensions based on 
molecular data at the population level as basic units. Our results can be used to propose a more 
specialized multi-objective algorithm for SCP problems, allowing researchers to deal with 
such problems in a more efficient and appropriate manner.
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