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ABSTRACT. The purpose of this study was to identify differentially 
expressed (DE) genes and biological processes associated with changes 
in gene expression in ankylosing spondylitis (AS). We performed a meta-
analysis using the integrative meta-analysis of expression data program 
on publicly available microarray AS Gene Expression Omnibus (GEO) 
datasets. We performed Gene Ontology (GO) enrichment analyses and 
pathway analysis using the Kyoto Encyclopedia of Genes and Genomes. 
Four GEO datasets, including 31 patients with AS and 39 controls, 
were available for the meta-analysis. We identified 65 genes across the 
studies that were consistently DE in patients with AS vs controls (23 
upregulated and 42 downregulated). The upregulated gene with the 
largest effect size (ES; -1.2628, P = 0.020951) was integral membrane 
protein 2A (ITM2A), which is expressed by CD4+ T cells and plays a 
role in activation of T cells. The downregulated gene with the largest 
ES (1.2299, P = 0.040075) was mitochondrial ribosomal protein S11 
(MRPS11). The most significant GO enrichment was in the respiratory 
electron transport chain category (P = 1.67 x 10-9). Therefore, our meta-
analysis identified genes that were consistently DE as well as biological 
pathways associated with gene expression changes in AS.

Key words: Ankylosing spondylitis; Gene expression; Meta-analysis; 
Pathway analysis



5162Y.H. Lee and G.G. Song

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (2): 5161-5170 (2015)

INTRODUCTION

Ankylosing spondylitis (AS) is a chronic inflammatory disorder characterized by in-
flammation in the spine and sacroiliac joints resulting in initial bone and joint erosion and 
subsequent ankylosis (Brown et al., 2002). Human leukocyte antigen (HLA) B27 was the first 
genetic factor to be associated with AS, and it confers considerable susceptibility to the disease. 
However, there has been increasing evidence to suggest that non-HLA-B27 genes also con-
tribute to AS pathogenesis (Lee et al., 2005a). Strong genetic factors have been implicated in 
the etiology of AS, but the biological mechanisms associated with the disease are still unclear.

High-throughput genomics technologies such as microarrays have improved our un-
derstanding of complex gene interactions and networks during disease development. Microar-
rays measure the expression of thousands of genes simultaneously on a genome-wide scale 
(Golub et al., 1999). Alterations in genetic profiles can be correlated to altered gene functions 
and biochemical activities. Microarray technology is a powerful tool that has become one of 
the most frequently used investigational methods in medical research.

Identification of gene expression signatures that differentiate disease states from those 
of healthy controls are dependent on sample availability, sample size, and heterogeneous da-
tasets (Ramasamy et al., 2008). Although many microarray studies have produced lists of dif-
ferentially expressed (DE) genes, there tend to be inconsistencies between studies due to the 
limitations of small sample sizes and variable results (Siddiqui et al., 2006).

To address these challenges, meta-analysis can be performed using publically avail-
able data from genome-wide gene expression studies in specific diseases (Griffith et al., 2006; 
Rung and Brazma, 2013). Meta-analysis can enhance the reliability and generalizability of 
studies to obtain a more precise estimate of gene expression profiles (Griffith et al., 2006). Me-
ta-analysis enhances the statistical power for  identifying more robust and reliable gene signa-
tures (Lee and Nath, 2005; Lee et al., 2005b; Choi et al., 2006). Recently, a new user-friendly 
microarray meta-analysis tool called integrative meta-analysis of expression data (INMEX) 
has been developed to support the meta-analysis of multiple gene expression datasets, as well 
as to enable the  integration of datasets of gene expression and pathways (Xia et al., 2013).

In order to overcome the limitations of individual studies, resolve inconsistencies, 
and reduce the likelihood of false-positive or -negative associations caused by random errors, 
we performed a microarray meta-analysis with the objective to identify DE genes in AS and 
biological processes associated with these gene expression changes.

MATERIAL AND METHODS

Identification of eligible AS gene expression datasets

A search for microarray datasets that examined DE genes between patients with AS 
and controls was conducted. We utilized the NCBI Gene Expression Omnibus (GEO) da-
tabase (http://www.ncbi.nlm.nih.gov/geo/) to identify microarray datasets submitted through 
September, 2013 (Barrett et al., 2011). The key word “ankylosing spondylitis” was used in the 
search. Studies were included in the analysis if they met the following criteria: 1) case-control 
studies; 2) included gene expression data; and 3) included patients diagnosed with AS based 
on specific AS diagnostic criteria (van der Linden et al., 1984). We excluded animal studies 
and studies in which microarray data could not be obtained. The following information was 
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extracted from each identified study: GEO accession number, sample type, platform, number 
of cases and controls, references, and gene expression data.

Meta-analysis of microarray datasets

All available AS microarray datasets were downloaded from the NCBI GEO database. 
We constructed data tables containing gene expression values or relative expression values 
with genes/probes in rows and samples/experiments delineated in individual columns. After 
uploading the datasets into the INMEX program (http://inmex.ca/INMEX) (Xia et al., 2013), we 
annotated the data by converting different gene or probe IDs to Entrez IDs. For each probe set, 
intensity values were log-transformed and normalized to zero mean and unit variance (Bolstad 
et al., 2003). When all datasets were uploaded, processed, and annotated, we performed a 
data integrity check before proceeding to the meta-analysis stage. The random-effects model, 
which assumes that individual studies contain substantial diversity and assesses both within-
study sampling error and between-study variance (DerSimonian and Laird, 1986; Choi et al., 
2003), is used in the presence of significant between-study heterogeneity (DerSimonian and 
Laird, 1986). Statistical manipulations were undertaken using INMEX.

Functional analysis

To further understand the functions of the genes present in the data lists, we performed 
GO enrichment analysis using hypergeometric tests (http://www.geneontology.org/) (Falcon 
and Gentleman, 2007). To functionally annotate the genes in the list, we identified over-repre-
sented Kyoto Encyclopedia of Genes and Genomes (KEGG) categories (http://www.genome.
ad.jp/) (Hua et al., 2010). Functional analysis was undertaken using INMEX.

RESULTS

Studies included in the meta-analysis

Eighty-five studies were identified by electronic search, eight of which were selected 
for full dataset review based on title and abstract details. Four datasets were excluded because 
they contained no data for meta-analysis, and four microarray datasets met our inclusion cri-
teria (Table 1). These datasets consisted of results from two synovium and two blood sample 
studies, and included a total of 31 patients with AS and 39 controls. Selected details of the 
individual studies are summarized in Table 1. Heat maps using differential expression analysis 
of individual datasets were used to visualize a subset of genes across the four studies (Figure 1).

Study 	 GEO accession	                Numbers	 Sample	 Platform

		  AS	 Controls

Study 1	 GSE41038	   2	   7	 Synovium	 GPL6883, Illumina HumanRef-8 v3.0 expression beadchip
Study 2	 GSE39340	   5	   7	 Synovium	 GPL10558, Illumina HumanHT-12 V4.0 expression beadchip
Study 3	 GSE25101	 16	 16	 PBMC	 GPL6947, Illumina HumanHT-12 V3.0 expression beadchip
Study 4	 GSE11886	   8	   9	 Macrophage	 GPL570, Affymetrix U133 plus 2.0

GEO = Gene Expression Omnibus; GSE = gene expression series; GPL = gene platform; AS = ankylosing 
spondylitis; PBMC = peripheral blood mononuclear cells.

Table 1. Characteristics of individual studies included in the meta-analysis.
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Meta-analysis of gene expression in AS

We used a random-effects model of effect size (ES) measurements to integrate gene 
expression patterns and incorporate between-study heterogeneities because the estimated Q 
value was not in a chi-squared distribution. We selected the DE genes with a P value < 0.05. 
There were 51 “gained” genes and 521 “lost” genes in this meta-analysis (Figure 2). “Gained” 
genes are the DE genes uniquely identified in the meta-analysis (Xia et al., 2013). These genes 
showed relatively weak but consistent expression profiles across the individual datasets. Their 
detection benefits from a larger number of samples and therefore they have more confidence 
to be declared as DE genes. “Lost” genes were those identified as DE genes in any individual 
analysis, but not in the meta-analysis. These genes either show conflicting changes in expres-
sion profiles between studies, or very large variation across different studies (arising from i.e. 
batch effect or system bias due to different platforms).

Identification of DE genes in AS

We identified a total of 65 genes across the four studies that were consistently DE 
in AS. Among the 65 DE genes, 23 were upregulated and 42 were downregulated. A list of 
the top 20 most significantly up- or downregulated genes is presented in Tables 2 and 3. The 

Figure 1. Heat map visualization of the differential expression of particular genes across different datasets (row-
wise comparison). The map was generated by re-scaling individual datasets to prevent domination by study-specific 
effects. AS = ankylosing spondylitis.
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upregulated gene with the largest ES (-1.2628) was integral membrane protein 2A (ITM2A), 
which is expressed by CD4+ T cells and plays a role in activation of T cells (Kirchner and 
Bevan, 1999). The upregulated gene with the lowest P value (0.005673) was transforming 
growth factor beta receptor III (TGFBR3), which, as part of the TGF pathway, is a true bone 
mineral density-associated gene (Xiong et al., 2009). These genes have not been previously 
reported to be associated with AS. Many consistently DE genes from the datasets are involved 
in immune dysregulation (Table 2). The downregulated gene with the largest ES (1.2299) was 
mitochondrial ribosomal protein S11 (MRPS11), which plays a role in protein synthesis within 
the mitochondrion (Emdadul Haque et al., 2008). The downregulated gene with the lowest P 
value (0.005673) was homogentisate 1,2-dioxygenase (HGD), which is involved in the catab-
olism of the amino acids tyrosine and phenylalanine (Zatkova et al., 2012). HGD deficiency 
is associated with bone deformity in AS (Balaban et al., 2006). Further studies are needed to 
elucidate the function of these DE genes in the pathogenesis of AS (Table 3).

Figure 2. Venn diagram showing overlap between DE genes identified in the meta-analysis (meta-DE) and those 
from each individual data analysis (individual-DE). DE = differentially expressed.

Entry ID	 Gene symbol	 Combined ES	 P value	 Gene name

  9452	 ITM2A	 -1.2628	 0.020951	 Integral membrane protein 2A
  7049	 TGFBR3	 -1.1914	 0.005673	 Transforming growth factor, beta receptor III
  1298	 COL9A2	 -1.0516	 0.015983	 Collagen, type IX, alpha 2
  1524	 CX3CR1	 -0.98613	 0.021885	 Chemokine (C-X3-Cmotif) receptor 1
83732	 RIOK1	 -0.98283	 0.021885	 Rio kinase 1
23348	 DOCK9	 -0.98149	 0.021885	 Dedicator of cytokinesis 9
  4092	 SMAD7	 -0.9634	 0.025091	 Smad family member 71

  8864	 PER2	 -0.94092	 0.042671	 Period circadian clock 2
25942	 SIN3A	 -0.93457	 0.029029	 Sin3 transcription regulator homolog A
11238	 CA5B	 -0.9231	 0.033352	 Carbonic anhydrase Vb, mitochondrial
  3710	 ITPR3	 -0.92061	 0.033352	 Inositol 1,4,5-trisphosphate receptor, type 3
79684	 MSANTD2	 -0.91939	 0.033352	 Myb/sant-like DNA-binding domain containing 2
91748	 C14orf43	 -0.91889	 0.033352	 Chromosome 14 open reading frame 43
  3939	 LDHA	 -0.90633	 0.048294	 Lactate dehydrogenase A
  9445	 ITM2B	 -0.89158	 0.040075	 Integral membrane protein 2b
10516	 FBLN5	 -0.89038	 0.038737	 Fibulin 5
26018	 LRIG1	 -0.88739	 0.039607	 Leucine-rich repeats and immunoglobulin-like domains 1
  8556	 CDC14A	 -0.88513	 0.040075	 Cell division cycle 14a
  8857	 FCGBP	 -0.87546	 0.0407	 Fc fragment of IgG binding protein
  6095	 RORA	 -0.86465	 0.042671	 Rar-related orphan receptor A

ES = effect size.

Table 2. Top 20 upregulated genes in ankylosing spondylitis.
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Functional analysis

To identify the biological processes associated with gene expression changes in AS, 
we performed GO analysis on the DE genes. We identified 210 significant enrichments in 
the DE genes, which were classified into 10 GO categories (Figure 3). The most significant 
enrichment was in the GO category respiratory electron transport chain (P = 1.67 x 10-9). 
Other significant GO categories included cellular respiration (P = 1.70 x 10-9) and the electron 
transport chain (P = 2.37 x 10-8) (Table 4). The identified GO terms further divided into a 
small number of categories: biological regulation, cellular metabolic process, small molecule 
metabolic process, cellular component organization, generation of precursor metabolites and 
energy, energy derivation by oxidation of organic compounds, oxidation-reduction process, 
cellular respiration, respiratory electron transport chain, electron transport chain, and others 
(Figure 3). To further investigate the functions of the 65 DE genes, we mapped them to the 
KEGG database (Table 5). We identified 42 significant pathways based on the KEGG data-
base analysis, the most significant of which was transcriptional misregulation in cancer (P = 
0.0025629). Other significant pathways included circadian rhythm - mammal (P = 0.0034372) 
and fat digestion and absorption (P = 0.035981; Table 5).

DISCUSSION

Many genes are DE in inflammatory diseases such as AS (Pimentel-Santos et al., 
2011), and the challenge is to identify the most important genes and pathways associated with 
a particular disease. These in turn will aid in the development of treatments and therapies for 
the disorder. Therefore, characterization of the molecular and cellular events that occur dur-
ing the pathogenesis of AS is an important endeavor. To do this, we chose a meta-analysis 
approach that combined DE genes from multiple microarray datasets to identify genes that 
were consistently DE and that reached statistical significance, and performed GO enrichment 
analysis using hypergeometric tests and pathway analysis using KEGG (Xia et al., 2013).

Entry ID	 Gene	 Combined ES	 P value	 Description

64963	 MRPS11	 1.2299	 0.040075	 Mitochondrial ribosomal protein S11
3081	 HGD	 1.221	 0.005673	 Homogentisate 1,2-dioxygenase
59286	 UBL5	 1.2096	 0.025091	 Ubiquitin-like 5
522	 ATP5J	 1.1596	 0.006938	 ATP synthase, H+ transporting, mitochondrial Focomplex, subunit F6
8625	 RFXANK	 1.0991	 0.042375	 Regulatory factor X-associated ankyrin-containing protein
4708	 NDUFB2	 1.0834	 0.015464	 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 2, 8 kDa
84987	 COX14	 1.0706	 0.015464	 Cytochrome C oxidase assembly homolog 14
64976	 MRPL40	 1.0693	 0.015464	 Mitochondrial ribosomal protein L40
25906	 C11orf51	 1.0666	 0.034987	 Chromosome 11 open reading frame 51
9454	 HOMER3	 1.0507	 0.015983	 Homer homolog 3
126328	 NDUFA11	 1.038	 0.015983	 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 11, 14.7 kDa
83460	 TMEM93	 1.0299	 0.017366	 Transmembrane protein 93
4694	 NDUFA1	 1.0262	 0.048294	 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1, 7.5 kDa
55004	 LAMTOR1	 1.025	 0.018842	 Late endosomal/lysosomaladaptor, MAPK and MTOR activator 11

5719	 PSMD13	 1.0056	 0.020951	 Proteasome (prosome, macropain) 26S subunit, non-ATPase, 13
475	 ATOX1	 0.99681	 0.020951	 ATX1 antioxidant protein 1 homolog
26521	 TIMM8B	 0.9956	 0.040075	 Translocaseof inner mitochondrial membrane 8 homolog B
286053	 NSMCE2	 0.98005	 0.021885	 Non-SMC element 2, MMS21 homolog
521	 ATP5I	 0.97762	 0.021885	 ATP synthase, H+ transporting, mitochondrial Focomplex, subunit E
51264	 MRPL27	 0.97719	 0.021885	 Mitochondrial ribosomal protein L27

ES = effect size.

Table 3. Top 20 downregulated genes in ankylosing spondylitis.
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Figure 3. Summary of the enriched GO terms for the list of DE genes from patients with AS as compared to 
controls. Number of DE genes in each category listed in brackets. GO = gene ontology; DE = differentially 
expressed; AS = ankylosing spondylitis.

GO = gene ontology.

GO ID	 Term	     P value	 Genes

GO:0022904	 Respiratory electron transport chain	 1.67E-09	 ATP5J; NDUFB2; NDUFA11; ATP5I; UQCRQ; 
			   ETFB; NDUFAF1; NDUFA1
GO:0045333	 Cellular respiration	 1.70E-09	 ATP5J; NDUFB2; NDUFA11; ATP5I; SURF1; 
			   UQCRQ; ETFB; NDUFAF1; NDUFA1
GO:0022900	 Electron transport chain	 2.37E-08	 ATP5J; NDUFB2; NDUFA11; ATP5I; UQCRQ; 
			   ETFB; NDUFAF1; NDUFA1
GO:0006091	 Generation of precursor metabolites and energy	 2.76E-08	 ATP5J; NDUFB2; NDUFA11; ATP5I; SURF1; 
			   ATPIF1; UQCRQ; ITPR3; ETFB; 
			   NDUFAF1; NDUFA1; LDHA
GO:0015980	 Energy derivation by oxidation of organic compounds	 1.16E-07	 ATP5J; NDUFB2; NDUFA11; ATP5I; SURF1; 
			   UQCRQ; ITPR3; ETFB; NDUFAF1; NDUFA1
GO:0055114	 Oxidation-reduction process	 1.73E-05	 ATP5J; NDUFB2; NDUFA11; ATP5I; SURF1; 
			   UQCRQ; ITPR3; ETFB; NDUFAF1; NDUFA1
GO:0006119	 Oxidative phosphorylation	 5.48E-05	 NDUFB2; SURF1; NDUFAF1; NDUFA1
GO:0044281	 Small molecule metabolic process	 6.91E-05	 HGD; ATP5J; NDUFB2; NDUFA11; PSMD13; 
			   ATP5I; SURF1; ATPIF1; UQCRQ; SIN3A; CA5B;
			   ITPR3; ETFB; RORA; HSD17B12; NKIRAS1; 
			   NT5M; NDUFA1; LDHA; DGAT1
GO:0006120	 Mitochondrial electron transport, NADH to ubiquinone	 0.00028854	 NDUFB2; NDUFAF1; NDUFA1
GO:0008535	 Respiratory chain complex IV assembly	 0.000449877	 COX14; SURF1
GO:0030071	 Regulation of mitotic metaphase/anaphase transition	 0.000489945	 NSMCE2; C11orf51; ANAPC11
GO:0042773	 ATP synthesis coupled electron transport	 0.000637252	 NDUFB2; NDUFAF1; NDUFA1
GO:0042775	 Mitochondrial ATP synthesis coupled electron transport	 0.000637252	 NDUFB2; NDUFAF1; NDUFA1
GO:0006754	 ATP biosynthetic process	 0.000720407	 ATP5J; ATP5I; SURF1
GO:0042776	 Mitochondrial ATP synthesis coupled proton transport	 0.000965788	 ATP5J; ATP5I

Table 4. Top 15 enriched GO terms from the active genes in ankylosing spondylitis.
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We performed a meta-analysis using four publicly available GEO datasets to identify 
common biological mechanisms involved in the pathogenesis of AS. We identified genes that 
were consistently over- or under-expressed, significant GO enrichments, and pathways associ-
ated with AS. In total, 65 genes across the four studies were consistently DE in AS (23 up- and 
42 downregulated). The upregulated gene with the lowest P value (0.005673) was TGFBR3 
and the upregulated gene with the largest ES (-1.2628) was ITM2A. Although the roles and 
association of these genes with AS have not yet been reported, ITM2A is involved in osteo- 
and chondrogenic cellular differentiation (cells responsible for the development of bone and 
cartilage, respectively) (Deleersnijder et al., 1996). ITM2A is also involved in the activation of 
T cells in the immune system (Kirchner and Bevan, 1999) and in myocyte differentiation (Van 
den Plas and Merregaert, 2004). Furthermore, some of the upregulated genes, e.g., ITM2A 
and collagen, type IX, alpha 2 (COL9A2), might modulate cartilage and bone metabolism 
leading to AS progression. Our meta-analysis of gene expression data also revealed upregula-
tion of chemokine C-X3-C motif receptor 1 (CX3CR1), consistent with previous microarray 
results of proinflammatory profiles in AS (Pimentel-Santos et al., 2011). Additional specific 
upregulated genes are involved in mediation of inflammation and in the chemotaxis pathway. 
The downregulated gene with the lowest P value (0.005673) was HGD, which is involved in 
the catabolism of the amino acids tyrosine and phenylalanine. HGD deficiency is relevant to 
the bone deformity of AS, as patients with HGD deficiency experience progressive kyphosis, 
obliteration of intervertebral spaces, and marginal intervertebral osteophytes resembling the 
syndesmophytes in AS (Zatkova et al., 2012).

The most significant GO enrichment amongst the list of 210 categories was the respi-
ratory electron transport chain (P = 1.67 x 10-9). Other significant GO categories included cel-
lular respiration (P = 1.70 x 10-9) and the electron transport chain (P = 2.37 x 10-8). Complexes 
I and II of the electron transport chain release reactive oxygen species (ROS) exclusively in 
the mitochondrial matrix, whereas complex III generates ROS on both sides of the mitochon-
drial inner membrane (Sena and Chandel, 2012). ROS can damage DNA, RNA, and proteins, 
and play a key role in the pathogenesis of inflammatory diseases like AS (Özenirler et al., 
2013). Amongst the 42 pathways in our KEGG analysis, transcriptional misregulation in can-
cer, circadian rhythm, and fat digestion and absorption were the most differently regulated in 

Pathway	    P value

Transcriptional misregulation in cancer	 0.0025629
Circadian rhythm - mammal	 0.0034372
Fat digestion and absorption	 0.035981
Pyrimidine metabolism	 0.062147
Glutamatergic synapse	 0.062147
Oocyte meiosis	 0.069928
Cell cycle	 0.088843
Fatty acid elongation	 0.089524
Nicotinate and nicotinamide metabolism	 0.10062
Pancreatic secretion	 0.11523
Tyrosine metabolism	 0.12603
Cysteine and methionine metabolism	 0.1296
Purine metabolism	 0.14024
Pyruvate metabolism	 0.15423
Taste transduction	 0.16801

KEGG = Kyoto encyclopedia of genes and genomes.

Table 5. List of the top 15 pathways based on KEGG analysis.
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AS. Transcriptional misregulation is known to contribute to tumorigenesis, and overexpressed 
oncogenic transcription factors alter the autoregulatory circuitry of the cell (Lee and Young, 
2013). Thus, transcriptional misregulation can contribute to cancer, autoimmunity, and in-
flammation (Lee and Young, 2013). The GO categories and KEGG pathways identified in this 
study merit further study and validation.

The present study has some limitations that require consideration. First, heterogeneity 
and confounding factors may have distorted the analysis. Clinical samples might have been 
heterogeneous with respect to clinical activity, severity, or gender. Second, the inflammatory 
nature of AS results in changes in gene expression in the white blood cell population and in 
the synovium. There are differences in gene expression between the synovium and blood that 
were not considered. However, our meta-analysis integrated samples from different tissues, 
which might have enabled us to detect genes that we would otherwise have missed in sub-
group analysis. Third, the numbers of studies and samples included in this meta-analysis were 
small. Small sample size and study number may not result in enough power to detect true gene 
expression changes involved in the pathogenesis of AS. Fourth, the magnitudes of the changes 
in gene expression identified were not large.

In conclusion, meta-analysis of gene expression profiling provided a global overview 
of differential gene expression in AS identifying 65 DE genes (23 up- and 42 downregulated 
genes). Integrated pathway analysis of the differentially regulated genes indicated roles in 
electron transport, inflammation, and various other processes. Our meta-analysis revealed pre-
viously unknown transcriptional changes in AS. Identification of the gene expression changes 
observed in AS will provide valuable insights into the pathogenesis of AS. Further functional 
studies might provide additional insights into the role of the differentially regulated genes in 
the pathophysiology of AS.
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