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ABSTRACT. The effects of 5 factors (template DNA, Mg2+, dNTPs, 
Taq DNA polymerase, and primer) on the polymerase chain reaction 
(PCR) were investigated to optimize the start codon targeted polymor-
phism (SCoT)-PCR system of Dactylis glomerata L., using an orthogo-
nal design L16 (4

5). A suitable SCoT-PCR system for D. glomerata was 
established; the 20 µL reaction volume contained 3.0 mM Mg2+, 0.2 
mM dNTPs, 1.0 U Taq DNA polymerase, 0.2 µM primer, 20 ng tem-
plate DNA, and 2 µL 10X buffer. Each factor had a different effect on 
the amplification reaction, and the concentration of dNTPs had the larg-
est effect on the SCoT-PCR system. We tested 10 orchardgrass samples 
to determine and verify the stability of the reaction system. The results 
showed that amplified bands from diverse materials were clear, stable, 
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and rich in polymorphisms, indicating that the optimized system was 
very stable.
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INTRODUCTION

Orchardgrass, or cocksfoot (Dactylis glomerata L.), is a common species of Poaceae 
in the genus Dactylis and is one of the most important cool-season perennial C3 bunchgrasses. 
This plant is commonly used for forage and hay production worldwide because of its remark-
able local adaptation, good tolerance to shadow (and thus is also known as orchardgrass), high 
yield, and high sugar content (Horn et al., 1988; Bushman et al., 2011; Xie et al., 2012). It 
plays an important role as forage material in North America, Europe (Casler et al., 2000), and 
Oceania, as well as in grassland animal husbandry and ecological construction of southern 
subtropical mountains of China. Because of the importance of orchardgrass as a forage and 
hay grass, in recent years, a number of studies have been performed to examine orchardgrass 
morphology (Felfoldi, 1975; Turner et al., 2012), anatomy (Ashenden, 1978), cytology (Lentz 
et al., 1983; Tosun et al., 1999), physiology (Davidson and Milthorpe, 1966; Yoshida and 
Uemura, 1984; Volaire, 1995; Volaire and Lelièvre, 2001), ecology (Eagles, 1983; Fan, 1997; 
Kyriazopoulos et al., 2013), and breeding (Denchev et al., 1997; Casler et al., 2000; Hopkins 
and Bhamidimarri, 2009). Molecular-level studies of orchardgrass have also been conducted. 
Numerous types of molecular genetic marker systems have been developed for use in germ-
plasm resources studies of orchardgrass, including amplified fragment length polymorphism 
markers (Reeves et al., 1998; Peng et al., 2008), random amplified polymorphic DNA markers 
(Kölliker et al., 1999; Tuna et al., 2004), sequence-related amplified polymorphism markers 
(Zeng et al., 2008; Scoles et al., 2010), inter-simple sequence repeat markers (Zeng et al., 
2006), simple sequence repeat (SSR) markers (Xie et al., 2010, 2012; Song et al., 2011; Last 
et al., 2013), and expressed sequence tag-SSR markers (Bushman et al., 2011). These studies 
have revealed varying levels of molecular genetic diversity depending on the type of molecu-
lar marker and the population examined (Mulpuri et al., 2013). However, start codon targeted 
(SCoT) polymorphism has not been applied in orchardgrass.

The start codon targeted (SCoT) polymorphism is simple, novel, and reliable method 
for generating gene-targeted markers developed by Collard and Mackill (2009) and validated 
in rice (Oryza sativa). It uses 18-mer single primers with polymerase chain reaction (PCR); 
the primers are simple to design and used to amplify the genomic region based on conserva-
tion of the ATG translation start site and flanking sequences in plant genes (Joshi et al., 1997; 
Collard and Mackill, 2009). SCoT is similar to random amplified polymorphic DNA or inter-
simple sequence repeat, but has some advantages such as being closely linked with the target 
gene, provides more information correlated with biological traits, and universality in plants 
compared with random DNA markers. These advantages have been verified in rice (Oryza 
sativa) (Collard and Mackill, 2009), mango (Mangifera indica) (Luo et al., 2011), peanut 
(Arachis hypogaea) (Xiong et al., 2011), grape (Vitis vinifera) (Guo et al., 2012), dendrobe 
(Dendrobium nobile) (Bhattacharyya et al., 2013), and limpograss (Hemarthria altissima) 
(Huang et al., 2013) for cultivar identification and genetic diversity analysis.
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Despite the advantages of the SCoT method, there are also limitations, such as the 
lack of polymorphisms detected because of the low stringency PCR conditions. SCoT relies 
on PCR-based methods, and the stability of the PCR is affected by numerous factors, in-
cluding Mg2+, dNTPs, primer, and Taq DNA polymerase concentrations, and diverse species 
required different PCR conditions. Hence, it is important to establish a stable and optimized 
reaction system for use with SCoT molecular markers. PCR reaction conditions are tradition-
ally optimized using the one-factor-at-a-time method, neglecting the interactions between the 
various factors. We employed an orthogonal design referred to as L16 (4

5) (4 levels of 5 fac-
tors: Taq DNA polymerase, Mg2+, DNA template, dNTPs, and primer) to optimize the SCoT-
PCR system for orchardgrass and to provide a method for studying genetic diversity, genetic 
relationships, the construction of molecular linkage genetic maps, variety identification, gene 
localization, quantitative trait loci analysis, and molecular marker-assisted breeding in or-
chardgrass.

MATERIAL AND METHODS

Tested materials

The materials used in this study were collected from the Teaching and Research 
Center at Southwest University (Rongchang), Chongqing in China in May 2013 (Table 1). 
Fresh young leaves were sampled directly from soil, placed in a refrigerator, and stored at 
-80°C. The sequence of the SCoT primer was as described by Luo et al. (2011), SCoT 1: 
5'-CAACAATGGCTACCACGC-3' and SCoT 2: 5'-ACAATGGCTACCACTGCC-3', and 
were synthesized by Shanghai Shenggong Biological Engineering Technology Services Ltd. 
(Shanghai, China). Mg2+, dNTPs, Taq DNA polymerase, 10X buffer, 6X buffer, and DL2000 
marker were purchased from Takara Biotechnology (Dalian) Co., Ltd. (Shiga, Japan).

Table 1. Names and types of orchardgrass samples used in this study.

No.	 Material name	 Type

1	 Bao Xin	 Cultivar
2	 Parthlong	 Wild Material
3	 PG337	 Wild Material
4	 90-130	 Wild Material
5	 Smithii	 Cultivar
6	 Bueno chile	 Wild Material
7	 Judiaca	 Wild Material
8	 General Belgrano	 Cultivar
9	 PG318	 Wild Material
10	 Crown	 Cultivar
11	 Porto	 Cultivar
12	 Akimidori Japan	 Cultivar
13	 PG76xPorto	 Hybrid Material

DNA extraction and SCoT-PCR program

DNA was extracted from fresh young leaf samples using a genomic DNA extraction 
kit (ComWin Biotechnology Co., Ltd., Beijing, China) following the manufacturer protocol. 
The quality and concentration of genomic DNA were determined using 1% (wt/vol) agarose 
gel electrophoresis and spectrophotometric analysis with the NanoDrop 2000 nucleic acid/



3055Optimization of orchardgrass SCoT-PCR reaction system

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (2): 3052-3061 (2015)

protein analyzer (Nanodrop Technologies, Wilmington, DE, USA). Isolated genomic DNA 
was diluted to 20 ng/mL and stored at -20°C.

PCR amplification reaction was performed in an Eppendorf Mastercycler (Hamburg, 
Germany) using the following program: 3 min at 94°C, followed by 36 cycles of denaturing at 
94°C for 30 s, annealing at 50°C for 1 min, extension at 72°C for 2 min, followed by a final ex-
tension at 72°C for 10 min and storage at 4°C. After amplification, 2 µL 6X buffer was added 
to the PCR amplification products. Next, 8-10 µL PCR products for each treatment were sepa-
rated on 1.5% agarose gels in 1X Tris-borate EDTA buffer and stained with GoldView™ dye 
(Beijing Bioteke Biotechnology Co., Beijing, China). DNA fragments were visualized under 
UV light and photographed using a gel documentation system (Bio-Rad, Hercules, CA, USA). 

Orthogonal optimization design of SCoT-PCR system

We examined the optimum concentrations of template DNA (Bao Xin), Mg2+, dNTPs, 
Taq DNA polymerase, and primer (SCoT 1: 5'- CAACAATGGCTACCACGC-3') using an 
orthogonal design L16 (4

5). The 4 concentrations for each of the 5 factors were chosen based 
on references and experience, and the levels and detailed experimental concentrations for each 
factor are listed in Table 2. The L16 (4

5) orthogonal experimental design is shown in Table 3. 
Amplification conditions were as follows: total volume of 20 µL, 2.0 µL 10X buffer and other 
components, and ddH2O to reach the total volume.

Table 2. Factors and volume levels of SCoT-PCR amplification for Dactylis glomerata.

Levels			   Factors

	 Mg2+ (mM)	 dNTPs (mM)	 Taq DNA polymerase (U)	 Primers (µM)	 Template DNA (ng)

1	 1.5	 0.15	 0.75	 0.2	 20
2	 2.0	 0.20	 1.00	 0.3	 30
3	 2.5	 0.25	 1.25	 0.4	 40
4	 3.0	 0.30	 1.50	 0.5	 50

Table 3. L16 (4
5) orthogonal design of SCoT-PCR amplification for Dactylis glomerata. 

Treatment No.	 Mg2+ (mM)	 dNTPs (mM)	 Taq DNA polymerase (U)	 Primers (µM)	 Template DNA (ng)	 Score

1	 1.5 (1)	 0.15 (1)	 0.75 (1)	 0.2 (1)	 20 (1)	 11
2	 1.5 (1)	 0.20 (2)	 1.00 (2)	 0.3 (2)	 30 (2)	   9
3	 1.5 (1)	 0.25 (3)	 1.25 (3)	 0.4 (3)	 40 (3)	 14
4	 1.5 (1)	 0.30 (4)	 1.50 (4)	 0.5 (4)	 50 (4)	   3
5	 2.0 (2)	 0.15 (1)	 1.00 (2)	 0.4 (3)	 50 (4)	   6
6	 2.0 (2)	 0.20 (2)	 0.75 (1)	 0.5 (4)	 40 (3)	 12
7	 2.0 (2)	 0.25 (3)	 1.50 (4)	 0.2 (1)	 30 (2)	 10
8	 2.0 (2)	 0.30 (4)	 1.25 (3)	 0.3 (2)	 20 (1)	   1
9	 2.5 (3)	 0.15 (1)	 1.25 (3)	 0.5 (4)	 30 (2)	   7
10	 2.5 (3)	 0.20 (2)	 1.50 (4)	 0.4 (3)	 20 (1)	 13
11	 2.5 (3)	 0.25 (3)	 0.75 (1)	 0.3 (2)	 50 (4)	   4
12	 2.5 (3)	 0.30 (4)	 1.00 (2)	 0.2 (1)	 40 (3)	   8
13	 3.0 (4)	 0.15 (1)	 1.50 (4)	 0.3 (2)	 40 (3)	   5
14	 3.0 (4)	 0.20 (2)	 1.25 (3)	 0.2 (1)	 50 (4)	 15
15	 3.0 (4)	 0.25 (3)	 1.00 (2)	 0.5 (4)	 20 (1)	 16
16	 3.0 (4)	 0.30 (4)	 0.75 (1)	 0.4 (3)	 30 (2)	   2
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Stability of optimal reaction system 

We used the DNA samples to examine the stability of the highest scored orthogonal 
experiment treatment and the statistical optimal treatment. We also selected the best treatment to 
verify the stability of the reaction system using the primer SCoT 2 and 10 orchardgrass samples.

RESULTS

Visual analysis of PCR orthogonal design

The PCR amplification products of the orthogonal experiment treatments showed 
variable fingerprinting patterns, treatment 8 showed no fragments, and treatment 15 showed 
the largest number of fragments (Figure 1). A scoring system was applied to determine vari-
ance between the SCoT-PCR fingerprint patterns using different treatments. According to He 
et al. (1998), DNA amplification patterns generated were scored on the scale of the best (16 
points) to worst (1 point) using scoring criteria, including amplified fragment number and 
clear degree of PCR amplification results (Table 3). According to the score for each treatment, 
the experimental value Ki of the score for each factor at the same level, the experimental value 
ki of mean of score in each factor under levels, and the range R of the mean of score for the 
same factors between different levels are shown in Table 4.

Figure 1. Electrophoresis using orthogonal design to obtain PCR products. Lane M = DNA marker DL2000; lanes 
1-16: Treatment numbers are same as those in Table 1.

Table 4. Analysis of orthogonal design.

Results	 Mg2+ (mM)	 dNTPs (mM)	 Taq DNA polymerase (U)	 Primers (µM)	 Template DNA (ng)

K1	 37.00	 29.00	 29.00	 44.00	 41.00
K2	 29.00	 49.00	 39.00	 19.00	 28.00
K3	 32.00	 44.00	 37.00	 35.00	 39.00
K4	 38.00	 14.00	 31.00	 38.00	 28.00
k1	   9.25	   7.25	   7.25	 11.00	 10.25
k2	   7.25	 12.25	   9.75	   4.75	   7.00
k3	   8.00	 11.00	   9.25	   8.75	   9.75
k4	   9.50	   3.50	   7.75	   9.50	   7.00
R	   2.25	   8.75	   2.50	   6.25	   3.25
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Range R reflects the influence template DNA, Mg2+, dNTPs, Taq DNA polymerase, 
and primer concentrations on the reaction system. A larger range for R indicated a more sig-
nificant influence of the factor. We found that the factors affected fingerprinting patterns in 
the order of dNTPs, primers, template DNA, Taq DNA polymerase, and Mg2+, from largest to 
smallest effect. 

The values ki reflects the influence of each factor under each level on the reaction 
system; a larger ki value indicates a better reaction level. The ki value can indicate the optimal 
concentration of each factor. By transforming the ki value of mean of score in each factor 
under levels into line charts, the relationship between the 5 factors and the mean of result of 
PCR orthogonal design observed (Figure 2). An Mg2+ concentration of 2 mM showed poor 
performance in the amplification reaction, while other tested Mg2+ concentrations showed 
good amplification results; the best performance was observed at 3.0 mM Mg2+ (Figure 2A). 

Figure 2. Relationship between 5 factors of (A) Mg2+, (B) dNTPs, (C) Taq DNA polymerase, (D) Primer, (E) 
Template DNA, as well as the mean of score of PCR orthogonal design.
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dNTPs are the substrates of Taq DNA polymerase, and their concentrations directly affect the 
results of the PCR. In the study, changes in dNTP concentration had a large impact on the 
orchardgrass SCoT-PCR reaction. With increasing dNTP concentration, the mean of result of 
PCR orthogonal design increased and then decreased. A dNTP concentration of 0.2 mM was 
associated with the best amplification results (Figure 2B). Taq DNA polymerase is a key factor 
in the PCR. The fingerprint patterns showed large differences at varying Taq DNA polymerase 
concentrations of 0.75-1.5 U, and the best fingerprint patterns were obtained at 1.0 U Taq poly-
merase (Figure 2C). Primer concentration also plays an important role in fingerprinting band 
patterns, and high primer concentration can increase the formation of primer dimers. Hence, 
the concentration with the highest score, 0.2 µM, should be used (Figure 2D). Appropriate 
DNA concentration is a prerequisite for amplification; high DNA concentration will increase 
nonspecific amplification products. As shown in Figure 2E, template DNA concentrations of 
20 and 40 ng showed good performance in the amplification reaction, and the best perfor-
mance was observed at a concentration of 20 ng. 

Based on our results, we found that the most suitable concentration of the 5 factors in 
this study were as follows: 3.0 mM Mg2+, 0.2 mM dNTPs, 1.0 U Taq DNA polymerase, 0.2 µM 
primer, and 20 ng template DNA. These concentrations showed some differences in amplifica-
tion efficiency compared to the highest scored treatment (3.0 mM Mg2+, 0.25 mM dNTPs, 1 U 
Taq DNA polymerase, 0.5 µM primer, and 20 ng template DNA). To verify the efficiency of 
the conditions showing the highest score, different template DNA was amplified. As shown in 
Figure 2, the amplification results of the 2 systems were good, and the fingerprinting patterns 
were very similar, but the amplified fragments for the statistically optimal treatment were 
brighter than those for the highest scored treatment (Figure 3). Therefore, the most suitable 
SCoT-PCR reaction system was 20 µL and contained 3.0 mM Mg2+, 0.2 mM dNTPs, 1.0 U Taq 
DNA polymerase, 0.2 µM primer, 20 ng template DNA, and 2 µL 10X buffer.

Figure 3. Electrophoresis of the statistical optimal reaction system (right) and the highest scored orthogonal 
reaction system (left). Lane M: DNA marker DL2000; lanes 1-7: Parthlong, PG337, Bueno Chile, PG318, Porto, 
Akimidori Japan, PG76 x Porto.



3059Optimization of orchardgrass SCoT-PCR reaction system

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (2): 3052-3061 (2015)

Stability of the optimized reaction system 

The primer SCoT 2 and 10 orchardgrass samples were used to verify the stability of 
the optimal reaction system. Figure 4 shows that the amplification bands of diverse samples 
were clear, stable, and rich in polymorphisms. The fingerprinting patterns of the 10 orchard-
grass samples not only reflected the genetic stability of each sample, but also revealed the 
genetic differences between samples, indicating that the optimized reaction system can be 
applied for SCoT-PCR analysis of orchardgrass.

Figure 4. Electrophoresis of materials of orchardgrass using the optimized reaction system. Lane M: DNA marker 
DL2000; lanes 1-10: 90-130, Smithii, Bueno Chile, Judiaca, General Belgrano, PG318, Crown, Porto, Akimidori 
Japan, PG76 x Porto.

DISCUSSION

Variations in the 5 factors tested changed the fingerprinting patterns significantly, and 
dNTP concentration was considered to be the most important factor affecting the PCR, which 
is consistent with the results obtained by Wang et al. (2007). Low dNTP concentration produce 
relatively poor amplification fingerprints, while high concentration compete with Taq DNA 
polymerase for Mg2+, reducing Mg2+ concentration and the activity of Taq DNA polymerase, 
eventually leading to the low PCR amplification levels. Therefore, the most effective dNTP 
concentration was a median of 0.2 mM. Mg2+ concentration had a minimal impact on the PCR 
results in our study. However, this result was in contrast to those of Xie et al. (2008) who used 
SSR markers analysis. This may be because Mg2+ concentration was influenced by the interac-
tion of various factors (Taq DNA polymerase, dNTPs, etc.) in the PCR system, thus showing 
varying levels of performance; this may be associated with the orthogonal design and the use 
of subjective scoring.

It is important to optimize the SCoT-PCR system for orchardgrass. Using an orthogo-
nal design L16 (4

5) to optimize the SCoT-PCR system in this study, we developed a rapid and 
simple method for investigating the mutual effects of factors and obtain satisfactory results. 
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Our SCoT-PCR system can be used for follow-up studies to further optimize the SCoT-PCR 
conditions in orchardgrass, particularly for genetic diversity analysis and molecular marker-
assisted breeding of orchardgrass using SCoT.
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