Genetics and Molecul

Online Journal

A suite of microsatellite markers for
genetic management of captive cracids
(Aves, Galliformes)

M.C. Costa', C. Camargo', N.M. Laganaro’, P.R.R. Oliveira Jr.},
P.V. Davanco’, R.M.A. Azeredo? J.G.P. Simpson?, L.F. Silveira®
and M.R. Francisco’

'Departamento de Ciéncias Ambientais, Universidade Federal de Sao Carlos,
Campus de Sorocaba, Sorocaba, SP, Brasil

2CRAX, Sociedade de Pesquisa do Manejo e da Reproduc@o da Fauna Silvestre,
Contagem, MG, Brasil

3Secdo de Aves, Museu de Zoologia da Universidade de Sao Paulo, Sao Paulo,
SP, Brasil

Corresponding author: M.R. Francisco
E-mail: mercival@ufscar.br

Genet. Mol. Res. 13 (4): 9867-9873 (2014)
Received February 19, 2014

Accepted July 2, 2014

Published November 27, 2014

DOI http://dx.doi.org/10.4238/2014.November.27.14

ABSTRACT. Cracids are medium to large frugivorous birds that are
endemic to the Neotropics. Because of deforestation and overhunting,
many species are threatened. The conservation of several species
has relied on captive breeding and reintroduction in the wild, but
captive populations may be inbred. Microsatellite tools can permit
the construction of genetic pedigrees to reduce inbreeding, but only
a few loci are available for this group of birds. Here, we present 10
novel polymorphic microsatellite loci and the cross-amplification of
these and of 10 additional loci available in the literature in a panel of 5
cracid species, including 3 species with high conservation concern. We
provide the first polymorphic loci for the jacutinga, Aburria jacutinga
(N = 8), and red-billed curassow, Crax blumenbachii (N = 9), and
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additional loci for bare-faced curassow, C. fasciolata (N = 8), Alagoas
curassow, Pauxi mitu (N = 5), and razor-billed curassow, P. tuberosa
(N = 5). The average number of alleles was 2.9 for A. jacutinga, 2.7
for C. blumenbachii, 3.5 for C. fasciolata, 2.6 for P. mitu, and 5.7 for
P, tuberosa. The mean expected heterozygosities were 0.42, 0.40, 0.48,
0.37, and 0.59, respectively. The average probabilities that the set of
loci would not exclude a pair of parents of an arbitrary offspring were
2.9% in A. jacutinga, 1% in C. blumenbachii, 0.5% in C. fasciolata,
0.4% in P. mitu, and 0.002% in P. tuberosa suggesting that these loci
may be adequate for parentage analysis and to implement ex situ genetic
management plans.

Key words: Galliformes; Endangered birds; Molecular markers;
Parentage analysis; Genetic pedigrees

INTRODUCTION

Cracids (guans, chachalacas, and curassows) are medium to large frugivorous birds
that are endemic to the Neotropics, where they play a significant role in tropical forest dy-
namics, especially through dispersing large-seeded plants (Sedaghatkish et al., 1999). Most
species depends on large primary forest tracts, which make them highly vulnerable to habitat
disturbance. For centuries, they also have been one of the major sources of proteins for sub-
sistence hunters, and many populations were extirpated throughout their distributions. As a
result, many species are vanishing, and 24 of the approximately 50 existing species are under
some level of threat (Brooks and Fuller, 2006).

The conservation of a number of cracids has relied on captive breeding and reintro-
duction into the wild. Ongoing releasing programs of captive-bred individuals have reestab-
lished populations of the endangered red-billed curassow, Crax blumenbachii IBAMA, 2004;
Bernardo et al., 2011), and of the jacutingas, Aburria jacutinga (Azeredo RA, unpublished
results), in areas where they have become extinct. Other reintroduction programs have been
planned to begin in the near future, and the most dramatic case is the Alagoas curassow, Pauxi
mitu, which has been extinct in the wild since the late 1970s (Silveira et al., 2004).

Captive cracid populations were often started from a limited number of founders,
either because they are difficult to capture alive or because there were no more individuals
available in the wild (Silveira et al., 2004). This increases the risks that deleterious alleles be-
come homozygous and lead to inbreeding depression, threatening the success of both captive
breeding and reintroductions (Witzenberger and Hochkirch, 2011). The traditional approach
to avoid inbreeding is minimizing the mating between closely related individuals following
studbook data (Ballou and Foose, 1995). However, pedigree recordings are not available for
the current captive cracid populations, although most of them were founded at least 2 decades
ago. In these cases, molecular genetic analyses can provide accurate genetic pedigrees, as well
as information on population genetic structure and variability (Witzenberger and Hochkirch,
2011). Thus, there is an urgent interest in implementing genetic monitoring programs for cap-
tive cracid populations that are intended to supply individuals for the ongoing and future
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reintroduction programs.

Polymorphic microsatellite loci are reliable tools for investigating individual relation-
ships in both captive and wild populations (Stoeckle et al., 2012), but only a few loci are
available for cracids (Hughes and Larson, 2000; Gongalves et al, 2010; Sousa et al., 2013).
Here, we present a set of novel and heterologous microsatellite loci isolated from cracid
genomic libraries and we tested their applicability for parentage analyses in a panel of 5
cracid species, 3 of which have a high conservation concern. These markers include the first
polymorphic loci for the endangered C. blumenbachii and A. jacutinga, and additional loci
for the extinct in the wild P. mitu.

MATERIAL AND METHODS

We collected blood samples from 27-30 captive individuals of each studied species
(Table 1). These animals were available in 3 private breeding facilities: CRAX - Sociedade
de Pesquisa do Manejo e da Reproducdo da Fauna Silvestre, Criadouro Cientifico e
Cultural de Pogos de Caldas, and CESP/Paraibuna. DNA was extracted using a standard
phenol:cloroform protocol. To isolate new microsatellite loci, we generated an enriched
library by digesting a genomic DNA sample of 4. jacutinga with a restriction enzyme
(Rsal; Promega, USA). DNA fragments were ligated to double-strand SNX linkers and
hybridized with 8 biotinylated probes for dinucleotide repeats (Hamilton et al., 1999). Then,
we selected DNA fragments containing potential microsatellites using magnetic beads
(Streptavidin MagneSphere Paramagnetic Particles, Promega), and the enriched sample was
cloned using TOPO TA Cloning Version P (Invitrogen Life Technologies). We sequenced
180 clones containing inserts in an ABI 3730 automated sequencer. Fluorescently labeled
primers were designed for 22 microsatellite motifs consisting of at least 6 repeats using the
Primer3 software program (Rozen and Skaletsky, 2000). We also designed primers for 15
new microsatellite motifs that were obtained from a genomic library previously developed
for the razor-billed curassow, P. tuberosa, using the same methodology described above
(see Sousa et al., 2013). We tested the broader use of these 37 loci and of an additional 10
loci available in the literature for P. tuberosa and P. mitu (Sousa et al., 2013). The loci were
screened for polymorphism within and between the cloned species and in C. blumenbachii,
bare-faced curassow, C. fasciolata, and P. mitu.

Polymerase chain reactions (PCRs) were performed in an Eppendorf MasterCycler
Gradient thermal cycler in a 10-uL volume containing 150 ng DNA, 0.2 mM of each dNTP,
1X PCR buffer (200 mM Tris-HCI, pH 8.4, and 500 mM KCl), 0.2 uM of each primer, 3
mM MgCl,, and 1 U Tag-polymerase. Amplification conditions were 94°C for 5 min; 30
cycles of 94°C for 30 s, 30 s at the annealing temperature specified in Table 1, and 30 s
at 72°C; and a final extension of 72°C for 10 min. Amplified products were scored on an
automated sequencer (ABI 3730).

We calculated the observed and expected heterozygosities, the probability of hetero-
zygosity deficit, and linkage disequilibrium using GENEPOP 4.0 (Raymond and Rousset,
1995). Levels of significance for multiple tests were corrected through the sequential Bon-
ferroni method (Rice, 1989). Evidence for null alleles was evaluated using Micro-Checker
(Van Oosterhout et al., 2004). The suitability of the loci for parentage analysis was assessed
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for each species by calculating the average probability that the set of loci would not exclude a
pair of candidate parents from parentage of an arbitrary offspring (PE), using the Cervus 3.0
software (Kalinowski et al., 2007).

Table 1. Primer sequences, repeat motifs, and annealing temperatures (Ta) of 10 novel polymorphic
microsatellite loci isolated from the Aburria jacutinga and Pauxi tuberosa genomic libraries.

Locus Primer sequence (5'-3") Repeat motif Ta (°C)
Aburria 21 GAGGATAAGCACGTCACAG

CAGCTAACTGGGTTTGAATCTG (CA),, 58.5
Aburria 22 ATGCGCACTAATGAACAGTC

TCAGCTAGCCTTCCATTCCCTCAC (AG),G(AG),, 58.5
Aburria 36 AAGTAGATCACCACATGAG

CATTAAGGTGGTAACTTCAG (GT),T(GT),, 46.4
Aburria 44 TCCCTAGCAGATTCTGAGAC

CACCACAGGAACAGTGAG (GT),, 55.8
Aburria 48 ATTGGTAAAATGTATGATCAG

TGCAAATAGTTTCATAGCATCAG (TG),, 48.2
Aburria 49 TTCCTTTGGAATAGTGTGAG

ACAAATGAACTGCAGAAGC (CA),, 46.4
Aburria 105 ACCATTTGCAGATTAGAC

ATCATCAGTGAAGAAACTG (TG), 55.8
Pauxi 1-16 ATGAACAGCCATTGCATGAC

AGGCAGACATTAGCAGTG (GAAA), 63.1
Pauxi 1-29 ACCATGTCTGGTTTCCT

ACTACATTGCTTCCTAACAG (GTTT),GG(GTTT)T(GTTT), 58.5
Pauxi 1-36 ACGATTCTGCAGTGAG

GTTATATCAAGTGTCCTCAG (AAAG), 55.8
RESULTS

Seven of the 22 loci isolated from A. jacutinga, and 3 of the 15 unpublished loci
isolated from the P. tuberosa genomic library amplified and were polymorphic in at least
1 of the target species (Table 2). Of the 10 loci previously available in the literature for P,
tuberosa and P. mitu, 9 presented polymorphism in other species. In total, we obtained 9
polymorphic loci for A. jacutinga, 9 for C. blumenbachii (the first described for these spe-
cies), 10 additional loci for C. fasciolata, and 5 additional loci for P. mitu and P. tuberosa.
We found significantly linked loci in 4. jacutinga (Pauxi 1-4), C. fasciolata (Pauxi 1-37 and
Pauxi 1-16), and P. tuberosa (Pauxi 1-37, Pauxi 2-7 and Pauxi 3-1), which were not used
for parentage analysis.

The average number of alleles per polymorphic locus was 2.9 for 4. jacutinga, 2.7
for C. blumenbachii, 3.5 for C. fasciolata, 2.6 for P. mitu, and 5.7 for P. tuberosa. The mean
expected heterozygosities were 0.42, 0.40, 0.48, 0.37, and 0.59, respectively (Table 2). Micro-
Checker indicated homozygote excess in loci Pauxi 3-4 for A. jacutinga; Pauxi 1-36 and
Pauxi 3-4 for C. blumenbachii; Pauxi 1-16, Pauxi 1-29, and Pauxi 1-36 for C. fasciolata; and
Aburria 21, Aburria 22, and Aburria 36 for P. tuberosa. However, we believe that heterozy-
gote deficiencies in these loci may be due to inbreeding rather than null alleles. For instance,
locus Pauxi 3-4 was fixed in 1 of 2 breeding facilities from which we obtained samples of C.
blumenbachii, which represented 13 of the 30 analyzed individuals. Besides, individuals that
failed to amplify completely (potentially homozygous for null alleles) were not found in any
of the locus-species combinations. PE values were 2.9% for 4. jacutinga, 1% for C. blumen-
bachii, 0.5% for C. fasciolata, 0.4% for P. mitu, and 0.002% for P. tuberosa.
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DISCUSSION

Cross-species amplification seemed to be a plausible alternative among cracids, with
19 of the 20 polymorphic loci showing transferability, often across genera, reducing the costs
and time investment for the generation of polymorphic markers. Six loci that were monomor-
phic in the original species (2 from A. jacutinga and 4 from P. tuberosa) amplified and were
polymorphic in other species.

The PE values varied among the studied species and sets of loci. Although some
studies can reach probabilities of non-exclusion around 0.1% (Faircloth et al., 2010; Cherel et
al., 2011), the populations that we analyzed invariably had a limited number of founders, and
individuals must be related, weakening the analysis power (Jones et al., 2010). For this reason,
we considered the PEs of 1% or less satisfactory, as the loci must be effective to resolve most
of the assignments. The non-exclusion of more than 1 pair of potential parents must be more
frequent in A. jacutinga, indicating the need of additional loci for this species.

The most critically endangered cracid species are those endemic to the Brazilian
Atlantic forest (P. mitu, C. blumenbachii, and A. jacutinga). The current population of P. mitu
is around 60 individuals living in 2 Brazilian breeding facilities, this species is one of the most
endangered birds on earth. Most living individuals of C. blumenbachii are also in captivity.
In 2004, when the captive population was 637 individuals, it was estimated that no more than
250 animals were living in the wild (IBAMA, 2004). Since captive breeding was demonstrated
to be a feasible strategy to preserve cracids, Brazilian governmental authorities started to
assist private captive breeding facilities and created official conservation action plans for these
birds. The microsatellite markers presented here will contribute to the improvement of these
official captive breeding programs by constructing genetic pedigrees, indicating individuals
to be translocated among breeding facilities and allowing the selection of individuals for
reintroduction in the wild based on their levels of heterozygosity and allelic diversity.
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