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ABSTRACT. The purpose of this study was to identify differentially 
expressed (DE) genes and biological processes associated with changes 
in gene expression in autism. We performed a meta-analysis using new 
publicly available Gene Expression Omnibus (GEO) datasets of autism. 
We performed Gene Ontology (GO) enrichment analyses and pathway 
analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG). 
Ten GEO datasets, including 364 cases and 248 controls, were available 
for the meta-analysis. We identified 3105 genes that were consistently 
DE in autism (1425 upregulated and 1680 downregulated genes). We 
also found that 7 genes were associated with phospholipase A2 (PLA2), 
including LYPLA2P1, PLA2G4D, PNPLA2, LYPLA2, PLA2G6, PLA2G7, 
and PLA2G5. We found GO terms for molecular functions significantly 
enriched in structural constituent of ribosome (GO: 0003735, P = 1.87-
E06) and transcription regulator activity (GO: 0030528, P = 8.86E-04), 
while for biological processes, the enriched GO terms were involved in 
translational elongation (GO: 0006414, P = 1.74E-12) and the response 
to cytokine stimuli (GO: 0034097, P = 2.76E-05). The most significant 
pathway in our KEGG analysis was the ribosome pathway (P = 7.90E-
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12). Our meta-analysis identified genes that were consistently DE and 
biological pathways associated with gene expression changes in autism.

Key words: Autism; Differentially expressed genes; Expression data; 
Meta-analysis; Microarray

INTRODUCTION

Autism is a common, highly heritable neuro-developmental condition characterized by 
marked genetic heterogeneity (Durand et al., 2007). Various etiologies have been suggested for this 
complex syndrome. Though it is associated with a high degree of heritability, the specific genes 
responsible for autism remain unknown. Various other factors have been implicated, including 
immunological (Ashwood et al., 2006), neurological (Hashimoto et al., 1993), and environmental 
(London, 2000) factors. Thus, a fundamental question is whether autism represents an etiologically 
heterogeneous disorder in which a myriad genetic or environmental risk factors perturb common 
underlying molecular pathways in the brain (Geschwind, 2008). However, in contrast with many 
other brain disorders, including neurodegenerative diseases such as Parkinson’s or Alzheimer’s 
diseases, autism lacks a clear unifying pathology at the molecular, cellular, and systems levels.

Emerging evidence implies that abnormal fatty acid metabolism plays a contribut-
ing role in autism pathology. Recent literature suggests that fatty acid homeostasis may be 
altered in autism as a result of insufficient dietary supplementation, genetic defects, function 
of enzymes involved in their metabolism, or influence of various environmental agents such 
as infections, inflammation, or drugs. Phospholipase A2 (PLA2) is an enzyme involved in 
maintaining membrane phospholipids. There are 3 major types of PLA2 enzymes: the cal-
cium-dependent group IV cytosolic PLA2, the group II secretory PLA2, and the group VI 
calcium-independent PLA2 (Sun et al., 2004). Elevated levels of PLA2 in red blood cells have 
been associated with neuropsychiatric disorders such as schizophrenia, depression, bipolar 
disorder, dyslexia, and autism (Horrobin and Bennett, 1999; Bell et al., 2004).

Determining global levels of gene expression regulation may be particularly important 
for understanding the pathological basis of diseases such as autism, in which multiple systems 
are affected. Alterations at the global level of gene expression regulation may be shared across 
systems, even when the tissue-specific genes affected by these global changes differ. High-
throughput genomics technologies have improved our understanding of the complex interac-
tions and networks involved in disease development. Microarrays measure the expression of 
thousands of genes simultaneously on a genome-wide scale (Golub et al., 1999). Alterations in 
gene profiles can be correlated to altered gene functions and biochemical activities. Microarray 
is a powerful tool that has rapidly increased as an investigational method in medical research.

Identification of gene expression signatures that differentiate the disease state from 
healthy controls is dependent on samples, sample size, heterogeneous data sets, and repro-
ducibility (Ramasamy et al., 2008). Although many microarray studies have provided lists of 
differentially expressed (DE) genes, there are inconsistencies among studies resulting from 
limitations such as small sample sizes (Siddiqui et al., 2006). Data integration techniques, 
such as meta-analyses, combine available data and integrate information from multiple inde-
pendent but related microarray studies to identify significant genes (Feichtinger et al., 2012). 
Combining data from various studies can enhance the reliability and generalizability of the 
results (Ramasamy et al., 2008) and can be used to more precisely estimate gene expression. In 
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particular, the benefit of increased statistical power can help to overcome the limitation of mi-
croarray studies. In this study, we used a new method to perform a meta-analysis of expression 
data of multiple gene expression data sets. To overcome the limitations of individual studies, 
resolve inconsistencies, and reduce the likelihood of random errors revealing false-positive or 
false-negative associations, we performed a microarray meta-analysis to identify DE genes 
and biological processes associated with gene expression changes in autism.

MATERIAL AND METHODS

Identification of eligible autism 

ASD gene expression datasets

We first queried PubMed and related databases for expression profiling studies com-
paring autism and normal control tissues (NT). The following key words and their combi-
nations were used: “autism, gene expression, microarray, genetics”. In addition, the Gene 
Expression Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo) was also searched to 
identify any other relevant studies. The search results were limited to those published between 
2000 and March 2013. We only retained the original experimental articles that analyzed gene 
expression profiling of autism and NT. Non-human studies, review articles, and integrated 
analysis of expression profiles were excluded. We conducted this meta-analysis in accordance 
with the guidelines provided in the PRISMA statement (The PRISMA Checklist S1). Data 
were extracted from the original studies by 2 independent reviewers. Any discrepancies be-
tween reviewers were resolved by consensus or consultation with a third reviewer. The fol-
lowing information was extracted from each identified study: GEO accession number, sample 
type, platform, number of cases and controls, references, and gene expression data.

Data preprocessing

Normalization is important for comparing microarray data sets. The heterogeneity 
of different datasets caused by using different platforms, different gene nomenclature, and 
different control tissues may make it difficult to directly compare studies. Thus, a global nor-
malization method for minimizing inconsistency should be used. For this purpose, we used the 
Z-score transformation approach to calculate the expression intensities for each probe of the 
gene expression profiles. Z-scores were calculated according to the formula:

where xi represents raw intensity data for each gene;  represents average gene intensity with-
in a single experiment, and d represents standard deviation (SD) of all measured intensities.

Statistical analysis

The significance analysis of the microarray software was then used to identify the 
DE genes between disease and control samples. This procedure combines the calculation of 
a Student t-test statistic value for each gene with subsequent permutation analysis and false 
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discovery rate (FDR) calculation. To obtain the best balance between the number of signifi-
cant calls and the lowest FDR for the dataset tested, we selected genes showing at least 2-fold 
changes and an FDR less than 0.05 as significantly DE.

Functional classification of DE genes

To examine the biological significance of DE genes, we performed Gene Ontology 
(GO) enrichment analysis to investigate their functional distribution. The online-based soft-
ware GeneCoDis3 (http://genecodis.cnb.csic.es) was used for this analysis. Fisher’s exact test 
was used at P value < 0.1 and significance level was adjusted by a correction for FDR. In ad-
dition, we also performed pathway enrichment analysis based on the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database.

RESULTS

Overview of the studies included

In this study, we identified a total of 10 expression-profiling studies based on our 
inclusion criteria, which included 612 samples of 364 cases and 248 controls. The character-
istics of studies included in this analysis are listed in Table 1 (Nishimura et al., 2007; Gregg 
et al., 2008; Hu et al., 2009a,b; Alter et al., 2011; Voineagu et al., 2011; Kuwano et al., 2011; 
Ginsberg et al., 2012). The data sets for GSE30573 and GSE28521 were examined in the same 
study, but GSE30573 was RNA - seqdata set, and the data sets we applied were almost micro-
array data sets except for GSE30573.

GEO ID	 Sample source	 Numbers (AU:NT)	 Platform

GSE7329	 Blood	 15:15	 GPL1708 Agilent-012391 G4112A
GSE6575	 Blood	 49:12	 GPL570 AffymetrixU133 plus 2.0
GSE15451	 Blood	 21:17	 GPL3427 TIGR 40K 
GSE15402	 Blood	 87:29	 GPL3427 TIGR 40K 
GSE26415	 Blood	 42:42	 GPL6480 Agilent-014850 4x44K G4112F
GSE28521	 Brain	 40:39	 GPL6883 Illumina HumanRef-8 v3.0 expression beadchip
GSE30573	 Brain	 3:3	 GPL9115 Illumina Genome Analyzer II
GSE25507	 Blood	 82:64	 GPL570 AffymetrixU133 plus 2.0
GSE38609	 Brain	 9:9	 GPL10558 Illumina HumanHT-12 V4.0 expression beadchip
GSE43076	 Blood	 16:18	 GPL6480 Agilent-014850 4x44K G4112F

AU = Autism; NT = normal tissue.

Table 1. Characteristics of individual studies included in the meta-analysis.

Global changes in gene expression

To identify genetic markers involved in the development and progression of child 
autism, we determined the probe ID, for a microarray platform that represent a named 
gene, and the HUGO symbol of that gene, for each data set to the National Center for 
Biotechnology Information (NCBI) gene ID. The expression value was logarithmically 
transformed (base 2) and then transformed to a Z-score for global normalization. After 
filtering the normalized data, 33,502 genes were detected in more than 60% of the samples. 



2150L.F. Ning et al.

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (1): 2146-2155 (2015)

Using the assembled expression compendium, we investigated global shifts in gene 
expression between child autism and corresponding NTs, respectively. The significance 
analysis of the microarray method was used to identify DE genes between pathological and 
control samples. With the threshold of FDR< 0.05 and minimal 2-fold changes, a total of 
3105 genes were found to be DE between child autism and NT. Among the 3105 DE genes, 
1425 genes were upregulated and 1680 genes were downregulated. Lists of the top 20 most 
significantly up- or downregulated genes are provided in Tables 2 and 3, respectively. We 
also identified 7 genes associated with PLA2, including LYPLA2P1, PLA2G4D, PNPLA2, 
LYPLA2, PLA2G6, PLA2G7, and PLA2G5 (Table 4).

Gene ID	 Gene symbol	 Combined ES	   P value	 Gene name

124975	 GGT6	 1.06E-02	 2.60E-09	 Gamma-glutamyltransferase 6
    7475	 WNT6	 1.35E-02	 2.62E-09	 Wingless-type MMTV integration site family, member 6
  84214	 DKFZP434F142	 1.70E+01	 2.92E-09	 Uncharacterized DKFZp434F142
283651	 HMGN2P46	 3.69E-02	 3.01E-09	 High mobility group nucleosomal binding domain 2 pseudogene 46
      678	 ZFP36L2	 1.91E-02	 4.95E-09	 ZFP36 ring finger protein-like 2
    8352	 HIST1H3C	 2.10E+01	 5.97E-09	 Histone cluster 1, H3c
    3126	 HLA-DRB4	 1.45E+01	 7.01E-09	 Major histocompatibility complex, class II, DR beta 4
    8350	 HIST1H3A	 1.78E+00	 1.22E-08	 Histone cluster 1, H3a
129880	 BBS5	 9.34E+00	 1.38E-08	 Bardet-Biedl syndrome 5
    2837	 UTS2R	 2.03E-02	 1.59E-08	 Urotensin 2 receptor
    3045	 HBD	 9.67E-02	 1.63E-08	 Hemoglobin, delta
      963	 CD53	 2.00E+01	 1.65E-08	 CD53 molecule
    8290	 HIST3H3	 4.19E-03	 1.67E-08	 Histone cluster 3, H3
339665	 SLC35E4	 2.83E-02	 1.78E-08	 Solute carrier family 35, member E4 
  84757	 MGC10814	 6.11E-02	 1.88E-08	 Uncharacterized protein MGC10814
    6181	 RPLP2	 2.06E-01	 1.97E-08	 Ribosomal protein, large, P2
  79955	 PDZD7	 1.95E-02	 2.03E-08	 PDZ domain containing 7 
147700	 KLC3	 3.49E-02	 2.05E-08	 Kinesin light chain 3
    8717	 TRADD	 5.57E+04	 2.14E-08	 TNFRSF1A-associated via death domain 
613126	 LOC613126	 7.33E-02	 2.19E-08	 Uncharacterized LOC613126

ES = effect size.

Table 2. Top 20 upregulated differentially expressed genes.

Gene ID	 Gene symbol	 Combined ES	    P value	 Gene name

283849	 EXOC3L1	 0.839180474	 0.0088416	 Exocyst complex component 3-like 1
677821	 SNORA39	 0.576012831	 0.0041636	 Small nucleolar RNA, H/ACA box 39
  55716	 LMBR1L	 0.81735657	 0.0079	 Limb development membrane protein 1-like
693187	 MIR602	 0.825906322	 0.001643	 MicroRNA 602
  90525	 SHF	 0.562686734	 0.0092982	 Src homology 2 domain containing F
339122	 RAB43	 0.82111752	 0.0083847	 RAB43, member RAS oncogene family
  10984	 KCNQ1OT1	 0.790779915	 0.00171585	 KCNQ1 opposite strand/antisense transcript 1 (non-protein coding)
390260	 OR6X1	 0.851178751	 0.0064821	 Olfactory receptor, family 6, subfamily X, member 1
650683	 LOC650683	 0.740192555	 0.0067242	 Hypothetical protein LOC650683
386676	 KRTAP10-9	 0.809996476	 0.0079572	 Keratin associated protein 10-9
641804	 LOC641804	 0.78233216	 0.0041796	 Similar to GTF2I repeat domain containing 1 isoform 2
256892	 OR51F1	 0.737303349	 0.006725	 Olfactory receptor, family 51, subfamily F, member 1
344657	 LRRIQ4	 0.845407404	 0.0093379	 Leucine-rich repeats and IQ motif containing 4
    3737	 KCNA2	 0.650380382	 0.0097038	 Potassium voltage-gated channel, shaker-related subfamily, member 2
284613	 CYB561D1	 0.795587453	 0.0071833	 Cytochrome b561 family, member D1
    9820	 CUL7	 0.768716592	 0.0063811	 Cullin 7
    8659	 ALDH4A1	 0.801344254	 0.0027847	 Aldehyde dehydrogenase 4 family, member A1
  79228	 THOC6	 0.373313212	 0.0081636	 THO complex 6 homolog (Drosophila)
  64946	 CENPH	 0.804828762	 0.0079593	 Centromere protein H
    5877	 RABIF	 0.793222926	 0.0056414	 RAB interacting factor

Table 3. Top 20 downregulated differentially expressed genes.
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Functional annotation of DE genes

To gain insight into the biological roles of these DE genes, we performed GO catego-
ries enrichment analysis. GO provides a common descriptive framework and functional anno-
tation and classification for gene sets analysis. GO categories are organized into 3 groups: bio-
logical process, molecular function, and cellular component. In our study, only the biological 
process and molecular function categories were considered. Using an FDR < 0.01 threshold, 
we identified 146 significant enrichments for DE genes. We identified GO terms for molecular 
functions significantly enriched in structural constituent of ribosome (GO: 0003735, P = 1.87-
E06) and transcription regulator activity (GO: 0030528, P = 8.86E-04) (Table 5), while for 
biological processes, the enriched GO terms were translational elongation (GO: 0006414, P = 
1.74E-12) and response to cytokine stimulus (GO: 0034097, P = 2.76E-05).

Gene ID	 Gene symbol	 P value	 Gene name

285840	 LYPLA2P1	 8.24E-03	 Lysophospholipase II pseudogene 1
283748	 PLA2G4D	 1.36E-03	 Phospholipase A2, group IVD (cytosolic)
  57104	 PNPLA2	 5.58E-03	 Patatin-like phospholipase domain containing 2
  11313	 LYPLA2	 1.02E-03	 Lysophospholipase II
    8398	 PLA2G6	 8.52E-03	 Phospholipase A2, group VI (cytosolic, calcium-independent)
    7941	 PLA2G7	 3.62E-03	 Phospholipase A2, group VII (platelet-activating factor acetylhydrolase, plasma)
    5322	 PLA2G5	 8.95E-04	 Phospholipase A2, group V

Table 4. PLA2-associated differentially expressed genes.

GO ID	 Term	 P value

Molecular functions
   GO: 0003735	 Structural constituent of ribosome	 1.87E-06
   GO: 0030528	 Transcription regulator activity	 8.86E-04
   GO: 0008134	 Transcription factor binding	 9.53E-04
   GO: 0032393	 MHC class I receptor activity	 3.33E-03
   GO: 0003723	 RNA binding	 4.01E-03
   GO: 0043565	 Sequence-specific DNA binding	 4.03E-03
   GO: 0016563	 Transcription activator activity	 4.31E-03
   GO: 0003700	 Transcription factor activity	 4.39E-03
   GO: 0030274	 LIM domain binding	 6.76E-03
   GO: 0003950	 NAD+ ADP-ribosyltransferase activity	 1.02E-02
   GO: 0003677	 DNA binding	 1.21E-02
   GO: 0003712	 Transcription cofactor activity	 1.44E-02
   GO: 0005254	 Chloride channel activity	 1.79E-02
   GO: 0005344	 Oxygen transporter activity	 1.80E-02
   GO: 0016776	 Phosphotransferase activity, phosphate group as acceptor	 1.96E-02
Biological processes
   GO: 0006414	 Translational elongation	 1.74E-12
   GO: 0034097	 Response to cytokine stimulus	 2.76E-05
   GO: 0006412	 Translation	 3.39E-05
   GO: 0045058	 T cell selection	 2.36E-04
   GO: 0015908	 Fatty acid transport	 3.65E-04
   GO: 0006325	 Chromatin organization	 1.10E-03
   GO: 0051276	 Chromosome organization	 1.73E-03
   GO: 0045449	 Regulation of transcription	 1.82E-03
   GO: 0046649	 Lymphocyte activation	 2.01E-03
   GO: 0042110	 T cell activation	 2.02E-03
   GO: 0006916	 Anti-apoptosis	 2.16E-03
   GO: 0006333	 Chromatin assembly or disassembly	 2.28E-03
   GO: 0043067	 Regulation of programmed cell death	 2.68E-03
   GO: 0043069	 Negative regulation of programmed cell death	 2.93E-03
   GO: 0015909	 Long-chain fatty acid transport	 2.94E-03

Table 5. GO enrichment of differentially expressed genes (top 15).



2152L.F. Ning et al.

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (1): 2146-2155 (2015)

To further evaluate the biological significance of the DE genes, we also performed a 
KEGG pathway enrichment analysis (Table 6). The most significant pathway in our KEGG analy-
sis was the ribosome pathway (P = 7.90E-12). Furthermore, graft-versus-host disease (P = 9.67E-
03) and primary immunodeficiency pathways (P = 3.32E-02) were found to be highly enriched.

KEGG pathway	 P value	 Genes

Ribosome	 7.90E-12	 LOC729362, LOC441073, LOC728139, LOC644464, RPS11, LOC388339, RPL37A, 
		  LOC100129685, RPL38, LOC644934, RPL14, RPS4X, LOC647285, LOC728576, LOC645174, 
		  LOC646766, LOC646966, LOC389156, RPL27A, LOC643358, LOC100131205, LOC100129882,
		  RPLP0P2, SNORA7B, RPS19, LOC387867, RPL12P6, RPS4X, LOC729402, RPS6, LOC400652, 
		  RPLP2, LOC100128060, RPL18, LOC648729, LOC100129902, LOC389141, LOC730029, 
		  LOC389342, LOC440575, LOC642892, RPS10P7, LOC100129424, LOC388556, LOC653156, 
		  RPL13, RPL10, LOC440737, RPL7A, LOC100128936, LOC728782, RPS27, LOC388474, 
		  LOC391833, RPL10L, RPS21, LOC653737, LOC441034
Graft-versus-host disease	 9.67E-03	 HLA-DRB4, KLRD1, KIR3DL1, CD28, KIR2DL2, KIR2DL3, PRF1, GZMB, HLA-B, 
		  IL1B, HLA-F, HLA-E, HLA-DRB1
Primary immunodeficiency	 3.32E-02	 CD40LG, CD4, CD40, CIITA, UNG, RFXAP, CD3D, CD3E, CD8B, CD79A

Table 6. KEGG pathway enrichment of differentially expressed genes.

DISCUSSION

Various genes are DE in individuals with autism, and identifying the most important genes 
and pathways associated with the disease is very important. We used a meta-analysis approach of 
DE genes from microarray datasets to identify genes that were consistently DE at a statistically 
significant level, and performed GO enrichment analysis and pathway analysis using KEGG.

We performed a meta-analysis using 10 publicly available GEO data sets to identify 
common biological mechanisms involved in the pathogenesis of autism. Nine of these GEO 
data sets were based on microarray data, while the GSE30573 dataset was from RNA sequenc-
ing determined in the same study as GSE28521. In 3 studies, postmortem brain tissue from 
individuals with autism was analyzed to show that the glutamate neurotransmitter system is 
altered in patients with autism, while other studies examined blood cells from autistic indi-
viduals. We identified genes that were consistently up- or downregulated, showed significant 
GO enrichment, and pathways associated with autism. A total of3105 genes across the studies 
were consistently DE in autism (1425 upregulated and 1680 downregulated). Among these 
3105 DE genes, 7 genes were associated with PLA2. To identify the biological processes as-
sociated with gene expression changes in autism, we performed GO analysis for the DE genes. 
The most significant enrichment among the list of molecular functions was the GO category 
of structural constituents of the ribosome (P = 1.87-E06). Other significant GO categories 
for biological processes included translational elongation (P = 1.74E-12) and the response to 
cytokine stimulus (P = 2.76E-05). The most significant pathway in our KEGG analysis was 
ribosome pathway (P = 7.90E-12). Furthermore, the graft-versus-host disease (P = 9.67E-03) 
and primary immunodeficiency pathways (P = 3.32E-02) were found to be highly enriched.

Using genome-wide differential display approaches, a number of recent studies have 
highlighted single-nucleotide polymorphisms, copy number variants, and epigenetic factors 
involved in the dysregulated expression of candidate genes related to autism occurrence (Bill 
and Geschwind, 2009). Putative and known candidates contributing to autism susceptibility 
are categorized based on the differentiation of neurons (e.g., DISC1, MET, PTEN, and ITGB3), 
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neuronal cell adhesion (e.g., NRXN1, NLGN3, and NLGN4X), transmission of nervous sys-
tem (e.g., OXTR, SLC6A4, GABRB3, and SHANK3), and regulation of neuronal activity (e.g., 
FMR1, MECP2, and UBE3A) (Ingram et al., 2000; Martin et al., 2000; Wassink et al., 2001; Ja-
main et al., 2002; Campbell et al., 2006; Hu et al., 2006; Talebizadeh et al., 2006; Durand et al., 
2007). In this study we identified autism susceptibility genes such as WNT2, EGR2, HOXA1, 
and SHAK3 among the 3105 differentially expressed genes. One of the underlying biologi-
cal components of neuro-developmental disorders may involve dysregulation of phospholipid 
metabolism. Therefore, we also identified genes associated with PLA2, including LYPLA2P1, 
PLA2G4D, PNPLA2, LYPLA2, PLA2G6, PLA2G7, and PLA2G5, among these DE genes iden-
tified. Evidence has accumulated regarding elevated plasma levels of PLA2 in schizophrenia 
patients compared with healthy controls. Three single-nucleotide polymorphisms in the gene 
encoding for cytosolic PLA2 have been linked to schizophrenia and were found to play a role in 
the etiology of this disorder (Wei et al., 1998; Tao et al., 2005). Interestingly, the genes encoding 
human calcium-independent PLA2 and secretory PLA2 map to regions on chromosome 8q23-
24 and 7q31, respectively (Meyer et al., 1996), which have been previously linked to autism 
(Chen et al., 2005; Combi et al., 2010). This suggests that the altered levels of arachidonic acid 
and docohexaenoic acid in individuals with autism may be attributed to abnormalities in PLA2. 
Indeed, significantly increased activity of type IV PLA2 has been reported in the red blood 
cells of patients with autism and Asperger’s syndrome compared to controls, strengthening 
the hypothesis that abnormal lipid metabolism occurs in autism (Bell et al., 2004, 2010). The 
increased PLA2 activity in individuals with autism may cause elevated breakdown of polyun-
saturated fatty acids and their subsequent reduced incorporation into membrane phospholipids. 
Overall, the literature suggests a link between abnormalities in PLA2 enzymes and some psy-
chiatric disorders, including autism spectrum disorders, which substantiates the importance of 
downstream lipid signaling molecules in proper nervous system functioning.

Interestingly, the most significant pathway in our KEGG analysis was the ribosome 
pathway. Ribosomal proteins play a crucial role in the regulation of protein synthesis. There-
fore, their expression must be strictly controlled (Caldarola et al., 2009). This finding suggests 
a generalized and non-targeted process and may be a result of deregulation of other pathways. 
Several lines of evidence have identified a link between ribosome biogenesis and diseases 
such as cancer, anemia, and aging. A recent review also emphasized that protein synthesis is 
tightly linked to the regulation of neurological processes and cell growth (Twiss and Fainzil-
ber, 2009). Deregulation of genes encoding ribosomal proteins may indirectly reflect an atypi-
cal process of neurological development in subjects with autism.

There were some limitations to our study. First, heterogeneity and confounding fac-
tors may have distorted our analysis. Clinical samples may be heterogeneous with respect to 
clinical activity, severity, or gender. Second, there were differences in gene expression be-
tween tissues such as the blood and brain that were not taken into account. However, our 
meta-analysis integrated data from different studies, enabling us to detect genes that would 
otherwise not have been identified. Despite these limitations, our findings have important im-
plications for the pathophysiology of autism.
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