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ABSTRACT. Imbalances typically exist in bioinformatics and are 
also common in other areas. A drawback of traditional machine 
learning methods is the relatively little attention given to small 
sample classification. Thus, we developed imDC, which uses an 
ensemble learning concept in combination with weights and sample 
misclassification information to effectively classify imbalanced 
data. Our method showed better results when compared to other 
algorithms with UCI machine learning datasets and microRNA 
data.
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INTRODUCTION

Classification has been a research hotspot in the field of machine learning in recent 
years, and several well-known methods for categorization were found to show good perfor-
mance. In practice, however, differences in class imbalances have been reported to hinder the 
performance of various standard classifiers. Although traditional classification methods can 
be used to achieve better performance in balanced data, some small-category samples will be 
predicted incorrectly in order to achieve high overall classification accuracy. These samples 
play an important role in practical application. For example, erroneous diagnosis of patients 
may exert a psychological burden, while misdiagnosis will prevent administration of proper 
treatment in a timely manner. In addition, limitations due to unbalanced data exist in many 
other areas, such as oil exploration (Kubat et al., 1998), bank lending, medical diagnosis, in-
formation retrieval, and text classification. Improving the identification accuracy of a minority 
class in an unbalanced dataset has been thoroughly examined.

The imbalance phenomenon is more obvious for microRNA (miRNA). Unlike posi-
tive examples, which require validation in biological experiments, negative examples are gen-
erally identified in gene coding sequences at random. This leads to overrepresentation of a 
large number of negative samples and a small number of positive samples. In general, negative 
samples can be filtered out based on pre-miRNA hairpin secondary structures to control for 
the quantity and quality, but the filtering step does not always reduce the imbalance. Studies 
should be conducted to develop methods of effectively using positive and negative resources 
in bioinformatics.

A number of algorithms based on traditional machine-learning algorithms have been 
developed to improve the classification performance of imbalanced data sets. Research on 
classification methods for unbalanced are currently considered at two levels. 

At the data level, imbalance can be eliminated or reduced by changing the data dis-
tribution. Most algorithms can be used to resolve data using 2 approaches: over-sampling and 
under-sampling. The first method increases minority class samples to improve classification 
performance of the minority class. The easiest method is to simply copy the minority class 
sample. This method leads to the natural introduction of additional training data and increases 
the training time, but does not add useful information to the sample, eventually leading to 
over-fitting. However, the synthetic minority over-sampling technique (SMOTE) (Chawla et 
al., 2002), a machine-learning approach based on over-sampling theory, could be used to avoid 
over-fitting but may introduce noise. Another method of reducing imbalances is by reducing 
the size of the majority class. This can be accomplished by randomly removing some of the 
samples in the majority class, which can lead to the loss of useful information. Drown et al. 
(2007) proposed an algorithm for identifying and removing noise samples to sample the ma-
jority class based on genetic algorithms.

Imbalance can also be corrected at the algorithm level to modify an existing clas-
sification algorithm. A cascaded algorithm for gradually reducing the number of samples in 
balanced data sets was proposed by Liu et al. (2006), in which a series of classifiers were in-
troduced in training predict samples through an ensemble approach. An alternative method to 
the integrated approach is based on cost-sensitive strategies and cost information that can be 
acquired from a domain expert. There are several methods for utilizing cost-sensitive informa-
tion such as the consideration-sensitive support vector machine proposed by Lee et al. (2004).

These methods use different approaches for improvement and optimization; however, 
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classification accuracy remains low for the minority class. Unfortunately, when ensemble 
approaches are used, computation time quickly increases, making the use of this method 
impractical for large-scale data. The cost-sensitive learning method has been shown to be 
equivalent to sampling methods. However, random subsampling is universally used for data 
balance even though most useful information will be lost. Studies are necessary to improve 
unbalanced data sets.

Imbalance classification basis

Ensemble learning theory

In practice, the machine learning method is widely used in production, research, and 
daily life. Its numerous applications include science, speech recognition, face recognition, 
handwriting recognition, data mining, medical diagnosis, and games. Ensemble learning is a 
very important and popular branch of machine learning that applies the philosophy of ‘4 eyes 
see more than 2’; it learns a model with a range of learners, using specific rules to integrate 
various learning outcomes. Ultimately, ensemble learning yields more efficient machine learn-
ing compared to that possible by a single learner.

Traditional machine-learning methods attempt to identify a classifier closest to the 
actual classification function from a space formed by the various possible functions. Single 
classifier models include decision trees, neural networks, and naive Bayes classifiers, among 
others. Ensemble learning classifies new instances with integrated classifiers, combining mul-
tiple classification results in order to achieve better performance than possible using a single 
classifier. Figure 1 shows the basic concept behind ​​ensemble learning.

Figure 1. Ensemble classification ideology.

Schapire (1990) examined the original Boosting model and found that certain com-
binations of weak classifiers or base classifiers have the same properties as strong classifiers, 
indicating that identifying a strong classifier is unnecessary. Furthermore, weak classifiers 
require the specific classification error rate to be less than 0.5. Dietterich (2000, 2002) pro-
vided several reasons as to why ensemble learning is effective. First, statistically, because 
of the insufficient number of the training set instances, a learning algorithm cannot learn to 
target assumptions precisely, and there is some risk in allowing a learning algorithm to select 
a hypothesis. Therefore, offsetting the error between each assumption and goal assumption 
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through integration is an advantage. Second, computationally, analysis of artificial neural net-
works and decision trees has revealed that the best learning hypothesis is a non-deterministic 
polynomial-time hard problem, as it is included in the other classifiers. We can only reduce the 
complexity to find the goal hypothesis through heuristic methods; furthermore, the assumption 
is not optimal. This indicates that integration of a number of assumptions will allow the end 
result to be closer to actual target function value.

As has been shown previously,  an efficient solution for classification is to include 
experts in various specific areas, in which base classifiers are fully trained in the training set 
feature space and a combination of experts are necessary. The final efficient solutions will be 
related to not only the combination of base classifiers, but also the performance of base-clas-
sifier algorithms. Several excellent algorithms based on integrated learning, such as bagging 
boosting, play an important role.

Imbalance classification

Unbalanced data set problems will arise when particular sample types are overrepre-
sented or underrepresented compared to others. Identifying minority classes with higher accu-
racy is necessary. However, there is no universally accepted definition regarding the size of the 
difference necessary to consider a dataset as unbalanced; in general, imbalance data problems 
appear when the data set shows a significant multiplied gap.

The University of California Irvine (UCI) machine-leaning database contains 187 
datasets, with the number continually increasing. With the emergence of increasingly 
large numbers of unbalanced datasets, the UCI is often used for standard test datasets as 
it contains a wide variety of data, including national diabetes research, computer virus, 
and Trojan information.

A traditional machine-learning algorithm aims to improve the overall recognition 
rate but will sacrifice recognition accuracy for a minority class. For example, for a data 
distribution such as 100:900, 90% classification accuracy is reached even when dividing 
all samples into the majority class. A further challenge of machine learning is to identify an 
accurate model for unbalanced datasets. Various unbalanced classification algorithms have 
been developed. SMOTE, one-sided selection, improved SVM algorithm, cost-sensitive al-
gorithms, and ensemble classification algorithms all form an important functional layer for 
unbalanced classification.

In machine learning, a series of indicators are necessary to evaluate classifier perfor-
mance. The indicators are generally defined as follows: tp indicates the number of true-posi-
tive predictions, tn indicates the number of true-negative predictions, fp indicates the number 
of false-positive predictions, and fn indicates the number of false-negative predictions. Evalu-
ation criteria of classification performance are as follows:

1) Sensitivity (se) reflects the classification accuracy of positive examples based on 
the following formula:

2) Specificity (sp) reflects classification accuracy of negative examples based on the 
following formula:

(Equation 1)
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3) Accuracy (acc) is a commonly used indicator in classification problems as it re-
flects the overall classification performance of the classifier based on the following formula:

4) Precision reflects the proportion of true predictions to all predictions of a category:

5) Recall reflects the fraction of all samples that are predicted to be true:

6) The Fmeasure value is the comprehensive classification performance response of re-
call and precision:

In equation (6), s  ≤  [0, ∞]; when s = 0, the F value is equal to precision. When s = 
∞, the F value is equal to recall. In general, sI s set to 1 and the F value is the harmonic mean 
of recall and precision.

7) The Matthew correlation coefficient (MCC) uses the number of correct and incor-
rect predictions to measure classifier performance:

8) A receiver operating characteristic (ROC) curve is an excellent robustness indicator 
of classifier performance; a value closer to the upper left corner is better. An ROC curve is a 
visual, but not quantitative, evaluation of classifier performance, for which the area under the 
ROC curve can be used to quantitatively evaluate the area under the curve, as shown in Figure 2.

Commonly used indicators for unbalanced datasets include precision, recall, and F 
value, in which precision and recall of the minority class can be used to effectively evaluate 
the classification performance of the minority class in unbalanced data. Precision and recall F 
value are also useful as evaluation criteria.

(Equation 6)

(Equation 2)

(Equation 3)

(Equation 4)

(Equation 5)

(Equation 7)



128

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (1): 123-133 (2015)

C.Y. Wang et al.

Acc is generally used to assess overall classification performance, but is ineffective for 
unbalanced datasets. Acc is approximately equivalent to sp, as tn and fp are much larger than 
tp and fn in the case of unbalanced data, while se is equivalent to recall in pattern recognition. 
Therefore se and sp are used as the standards for measuring the effect of unbalanced classifica-
tion in bioinformatics.

Figure 2. Receiver operating characteristic (ROC) curve diagram.

MATERIAL AND METHODS

Because misclassification of the minority class will result in very large losses in life and 
work, it would be reasonable to adopt unbalanced data classification algorithms in such cases; 
however, these algorithms may not be effective for resolving issues in unbalanced datasets with 
different distributions. Ensemble learning can be applied to such imbalanced datasets (imDC).

A study by Krogh (1995) examining ensemble classification found that a large differ-
ence between base classifiers should improve the effect of integration. In addition, some clas-
sification algorithms appear to incorporate learning, but are unable to train for other datasets. 
Thus, 16 classification algorithms, including decision trees, random forests, support vector 
machines, naive Bayes, and k neighbors, among others, are selected, and identifying 5 excel-
lent classification algorithms is necessary for circular training of datasets. Note that a new 
dataset that contains minority class examples and an equal number of random majority class 
examples is used to evaluate 16 algorithms to produce 5 optimal algorithms. Most classifiers 
are weak and use default parameters with no tuning. Because excessive classifications may 
affect the final ensemble result, 5 optimal classification algorithms are appropriate.

The number of base classifiers (iterationNum) depends on the ratio of majority class 
examples and minority class examples and is referred to as n. If n ≤ 5, we set iterationNum 
to 5, otherwise iterationNum is n. When the ratio was small, the 5 optimal classification algo-
rithms were adequately trained and the solution performed optimally after integration. In ad-
dition, useful information for majority class examples was retained when the ratio was large. 
Next, training data were trained iterationNum times and a classification algorithm chosen from 
the 5 optimal classification algorithms was used for training the dataset each time.

Some samples were misclassified because of the unbalanced distribution of data or 



129

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (1): 123-133 (2015)

Ensemble imbalanced classification method

noise; importantly, these samples may have contained very valuable information, referred to 
as the richest information. In the training process, the weights of the sample containing the 
richest information began increasing, making it easier to select these samples for the next 
round of base classifiers. Because minority class samples and majority class samples randomly 
selected according to their weights formed a new sub-dataset to train our classification algo-
rithm, we set the weight to the majority class to ensure selection of majority class samples with 
the richest information in order of priority.

We used geometric evaluation of the misclassification rate of positive and negative 
samples as the weight of base classifiers in each round before integrated classification. A flag 
may be used as a first step, as shown in Table 1.

Table 1. Sample tag.

                                                                                                                                                         Predicted class

		  True	 False

True class	 	 0	 1
   True	 	 2	 3
   False

The flags were designated as follows. If a sample belonged to the minority class and pre-
diction was correct, then flag = 0; if a sample belonged to the minority class and prediction was 
incorrect, then flag = 1; if a sample belonged to the majority class and the prediction was correct, 
then flag = 3; if a sample  belonged to the majority class and the prediction was incorrect, then flag 
= 4. The parameter g was related to the weight of base classifiers, assuming the 4 types of samples 
were n0, n1, n3, and n2 after the test, and g = [1.0 x n0/(n0 + n1) + 1.0 x n3/(n3 + n2)]/2.

The basic flow of the algorithm was as follows:
Algorithm 1
Input: Data set D; category of minority class sample 
Output: Predicted category of test sample x 
ImDC:
Step 1: Begin;
Step 2: Obtained a new dataset D', which contained minority class examples and an 

equal number of random majority class examples (number of minority class examples, major-
ity class examples, and D' are n+, n-, 2n+);

Step 3: 5 optimal classification algorithms were selected by 5-fold cross validation 
with the dataset D' from 16 classification algorithms, number 1-5;

Step 4: Minority class samples: D+, majority class samples: D- Samples in D- were as-
signed to initial weights: wi = 1/ n-, i = 1, 2… n-;

Step 5: If n+/n- ≤ 5 iterationNum = 5; otherwise iterationNum = n+/n-;
Step 6: For j = 1 to iterationNum;
Step 7: D+ and 2n+ samples extracted from D- (if insufficient, select all) formed a new 

data set: Dtrain;
Step 8: Selected the j% 5 numbered classification algorithm numbered j% 5 to train Tj 

and generate base classifiers hj;
Step 9: testing D-, D+ with Tj，and recording the number of positive and negative 

misclassification samples misclassification: n+_w, n-_w. Modified the weights of minority class 
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samples: w = w+(n+_w)/ D- followed by normalization. Setting the weight of current round of 
base classifier: gj = [1.0*( D- - n+_w)/ D-  + 1.0*( D+ - n-_w) / D+]/2;

Step 10: End for;
Step 11: Weighted voting for predictions with iterationNum integrated classifiers (h1 

~hiterationNum):
H(x) = ∑j=1

iterationNum gjhj(x)
Step 12: End

RESULTS AND DISCUSSION

Our experiment was based on UCI test data and miRNA bioinformatics data. We used 
these data to verify the effectiveness of our method proposed and strategy. Experiments were 
conducted in 2 groups: UCI test and miRNA test. 

UCI data

The five representative datasets in the UCI included cmc, haberman, ionosphere, let-
ter, and pima, as shown in Table 2. The samples of these 5 datasets were set to be unbalanced 
so that the smallest category was regarded as the positive class and the rest were treated as the 
negative class. These datasets were quite different in scale, as the total number ranged from 
306-20,000 and the proportion of the minority class and majority class ranged from 2-25. As 
described above, these datasets were derived from the UCI database and covered typical clas-
sification problems in machine learning and pattern recognition. Therefore, they are strongly 
represented imbalanced datasets.

Table 2. 5 University of California Irvine data.

Dataset	 Size	 Class	 Positive class	 |P|:|N|

Cmc	   1473	   3	 Class = 2	   1140:333
Haberman	     306	   2	 Class = 2	   225:81
Ionosphere	      351	   2	 Class = good	     225:126
Letter-recognition	 20000	 26	 Class = A	 19211:789
Pima-indians-diabetes	     768	   2	 Class = 1	     500:268

To quantitatively evaluate our algorithm, we selected AdaBoost, UnderSampl, HSampl, 
AsymBoost, BalanceCascade, and LibID as comparative methods. AdaBoost is used in many 
applications because of its stable performance; each round of already established base classi-
fiers affects the subsequent round of base classifier performance. The UnderSampl sampling 
method is a common random under-sampling method that chooses positive examples and the 
same ratio of randomly negative examples as the new balanced training set. After data process-
ing using the UnderSampl method, the AdaBoost algorithm was used to train classifiers. For 
HSampl, we used over-sampling to double the small samples, and then used under-sampling 
to shrink the large samples. Finally, AdaBoost was used to train classifiers when the dataset 
was balanced. Since AdaBoost treats misclassified positive and negative examples equally, it 
cannot support high performance in imbalanced data. Asymboost is an improved algorithm of 
AdaBoost in which positive samples had a higher price when they were misclassified (Lin et 
al., 2013, 2014; Song et al., 2014). However, when positive and negative examples had an equal 
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cost for classification, the algorithm was equivalent to AdaBoost. BalanceCascade uses a cas-
cade structure to gradually narrow the major categories and gradually create a more balanced 
dataset; thus, the algorithm uses a series of classifiers to complete the integrated classification. 
LibID is a solution to solve imbalance classification as proposed by Quan (2010), which aims to 
split major categories data and using a vote to obtain the result. Results are shown in Figure 3.

Figure 3. Cross-validation results of five UCI data sets.

miRNA data

miRNA is an important non-coding RNA molecule that plays an important role in 
regulating gene expression. Specifically identifying sequences in a biological genome is an 
important use of miRNA. Identified fragments can be analyzed using biological methods such 
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as biochips for authentication, which is costly and complex. Because miRNAs need to be ex-
amined experimentally for their accuracy, the quantity of miRNA needed is small. However, 
miRNAs must form stable hairpins for processing, and a large number of sequences similar 
to hairpin precursor miRNAs exist in millions of genes. Positive examples and negative ex-
amples show important differences, and typical imbalance exists. Xue et al. (2005) presented 
the triplet-SVM approach, which is capable of solving unbalanced classification. They found 
datasets of miRNAs with 193 positive examples and 8494 negative examples, in which 30 
positive examples and 1000 negative examples were a test set. In order to evaluate the imDC 
method, we compared triplet-SVM and libID using the same dataset containing a test dataset 
of 30 positive examples, 1000 negative examples, and a training dataset of the remaining 163 
positive examples and 7494 negative examples. The results are shown in Table 3.

CONCLUSIONS

miRNA is an important non-coding RNA that is important in the development of 
various diseases. An imbalance of positive and negative miRNA examples is observed when 
using machine-learning methods to resolve issues related to miRNA identification; therefore, 
we propose an effective method referred to as imDC. imDC makes full use of minority class 
samples, increases misclassified sample weights, and can effectively handle imbalanced data 
using a special distribution. Experiments on multiple sets of data in the UCI and miRNA da-
tabases showed satisfactory results.

Although imDC can be used to effectively predict the classification of minority class 
samples, time performance of our 5 optimal classifiers was not considered, and some classi-
fiers showed a large increase in computation time. In addition, integrated classifiers use default 
parameters without tuning, which requires further investigation.
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