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ABSTRACT. Protein kinases regulate many processes, including cell 
growth, metabolism, molecular interactions, and cell proliferation. 
Protein kinase B (PKB)/AKT (v-AKT mouse thymoma viral oncogene 
homolog) is an upstream component of mammalian target of rapamycin 
(mTOR) signaling and mediates pathophysiological processes in several 
signaling pathways. This study aimed to construct and overexpress 
a eukaryotic goat AKT expression vector in goat fetal fibroblasts and 
examine the effects of AKT on the phosphorylation of p70S6K and 4E-
BP1. AKT was subcloned into the expression vector pIRES2-DsRed2 to 
generate pIRES2-DsRed2-AKT, which was transfected into goat fetal 
fibroblasts with LipofectamineTM 2000. AKT was measured by reverse 
transcription-polymerase chain reaction in the transgenic cells, and the 
expression of AKT and phosphorylation of p70S6K (Thr389) and 4E-
BP1 (Thr37/46) were analyzed by Western blot. Cell clones that stably 
emitted red fluorescence were obtained after transfection for 48 h, and 
the exogenous gene was verified. Exogenous AKT was transcribed, 
and AKT was overexpressed, inducing the phosphorylation of p70S6K 
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(Thr389) and 4E-BP1 (Thr37/46) in goat fetal fibroblasts. Thus, the 
overexpression of AKT activates mTOR signaling in goat cells.
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INTRODUCTION

Protein kinase B (PKB)/AKT (v-AKT mouse thymoma viral oncogene homolog) has 
3 highly homologous isoforms - PKBα/AKT1, PKBβ/AKT2, and PKBγ/AKT3 - that belong 
to the AGC kinase family (Nicholson and Anderson, 2002). PKB/AKT comprises 480 amino 
acids and forms 3 domains, from the N- to C-terminus: a pleckstrin homology domain, which 
binds phosphoinositide 3-OH kinase (PI3K) to induce the translocation of PKB/AKT to the 
plasma membrane, a catalytic domain, and a regulatory domain (Downward, 1998).

AKT mediates many signal transduction pathways as a serine/threonine kinase in 
many species. AKT phosphorylates downstream substrates to regulate cell growth, prolifera-
tion, apoptosis, and other processes (Martelli et al., 2010). The integrated activation of AKT 
requires the phosphorylation of Thr308 in its activation loop by phosphoinositide-dependent 
kinase 1 (PDK1) (Stephens et al., 1998) and of Ser473 in its C-terminal hydrophobic motif by 
the rictor-mTOR complex in vitro (Sarbassov et al., 2005).

AKT is as an obligate intermediate in certain signaling pathways, particularly insulin 
signaling; thus, an AKT-independent pathway of insulin activity might be exploited to treat 
metabolic diseases (Cheng and White, 2012). AKT has critical functions in cell proliferation, 
apoptosis, and protein synthesis. AKT also governs signaling transduction by nutrients (Jewell 
and Guan, 2013) and immune modulation (Zhang et al., 2013).

As a central regulator of cell metabolism, PI3K/AKT/mTOR signaling mediates 
the pathogenesis of many tumors. The mammalian target of rapamycin (mTOR), a PI3K-
related protein kinase, controls cell growth in response to nutrients and growth factors and 
is frequently deregulated in cancer (Yang et al., 2013). In PI3K/AKT/mTOR signaling, AKT 
is activated by PI3K kinase in the cell membrane and returns to the cytoplasm or nucleus to 
phosphorylate downstream substrates.

Of the many substrates of AKT, mTOR and its downstream molecules inhibit non-p53-
dependent apoptosis (Skeen et al., 2006). As an upstream regulator of mTOR, AKT is nega-
tively regulated by phosphatase and tensin homolog deleted on chromosome 10, which sup-
presses AKT by dephosphorylating PI(3,4,5)P3 to PI(4,5)P2 (Tong et al., 2009). AKT inhibits 
tuberous sclerosis complex 1/2 (TSC1/2), a complex that inhibits mTOR by suppressing the 
activity of the upstream mTOR activator Rheb (Huang et al., 2008). The TSC1/2 complex neg-
atively regulates mTORC1 by converting a small Ras-related GTPase (Rheb) into its inactive 
GDP-bound state. In its GTP-bound form, Rheb interacts directly with and activates mTORC1 
(Alayev and Holz, 2013). The activation of AKT mediates PI3K/AKT/mTOR signaling and 
governs cell fate.

Progress has been made in identifying AKT and understanding its functions in human, 
mouse, and rat, but little is known about its activity in small ruminants, specifically goat. In 
this study, we constructed and overexpressed a eukaryotic goat AKT expression vector in goat 
fetal fibroblasts (GFbs) to study its function and regulatory effects on the mTOR signaling 
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pathway. AKT is functional in GFbs and regulates mTOR signaling.

MATERIAL AND METHODS

Cell culture conditions

Inner Mongolia Cashmere GFbs were maintained as monolayer cultures in Dulbec-
co’s modified Eagle’s medium (DMEM)/F12 (Gibco, Paisley, Scotland, UK) supplemented 
with 10% fetal bovine serum (FBS, Hyclone Laboratories, Inc., Logan, UT, USA), 100 U/mL 
penicillin G, and 100 mg/mL streptomycin (Sigma-Aldrich, Inc., St. Louis, MO, USA). Cell 
cultures were maintained and incubated at 37°C in humidified air with 5% CO2.

Construction of pIRES2-DsRed2-AKT

pMD19T-AKT and pIRES2-DsRed2 (Clontech Laboratories, Inc., Mountain View, 
CA, USA) were digested with EcoRI and BamHI (TaKaRa, Dalian, China), and an AKT 
fragment was subcloned into pIRES2-DsRed2 to generate the recombinant vector pIRES2-
DsRed2-AKT. The recombinant plasmids were verified by restriction analysis, and photos 
were taken on an ultraviolet transilluminator (UVItec, UK) after electrophoresis. The maps of 
the expression vectors are shown in Figure 1A.

Figure 1. A. Structure of pIRES2-DsRed2-AKT and B. schematic of reverse transcription-polymerase chain 
reaction (RT-PCR) product.

Transfection in vitro

pIRES2-DsRed2-AKT (4 μg) was mixed with 8 μL LipofectamineTM 2000 (Invitro-
gen, Carlsbad, CA, USA) and 5 mL serum-free medium. GFbs, grown from 60 to 70% conflu-
ence on 6-well plates, were incubated with this solution for 6 h at 37°C and 5% CO2; empty 
vector and untransfected cells were used as controls. The medium was removed after 4 h, and 
the cells were incubated in DMEM/F12 with 10% FBS. Red fluorescence was observed 48 h 
after transfection under a fluorescence microscope (Olympus IX71, Japan).
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Transcription of exogenous AKT in transfected GFbs

Total RNA was isolated from GFb transfectants with RNAzol (RNAiso Plus, Ta-
KaRa Co. Ltd.). RNA was reverse transcribed with oligo(dT)18 primer according to manu-
facturer instructions (TaKaRa Co. Ltd.). An input of 1 μg total RNA was used for each re-
action. A 490-bp fragment (Figure 1B) was amplified by polymerase chain reaction (PCR) 
with cDNA as the annealing template at 55°C using forward (5'-ACCATTACGCCACCTGA
CC-3') and reverse primers (5'-GAGCCATTTGACTCTTTCCAC-3').

Analysis of AKT overexpression in GFbs

Transfected GFbs were harvested with trypsin, washed with cold phosphate-buffered 
saline, and dissolved in cell lysis buffer. The cells was then placed on ice for 15 min and cen-
trifuged at 13,000 rpm at 4°C for 20 min. The concentrations of the lysates were measured by 
Bradford assay (Bio-Rad Laboratories, USA). Equal amounts (30 μg) of protein were elec-
trophoresed on 10% (w/v) sodium dodecyl sulfate polyacrylamide gels, transferred to poly-
vinylidene fluoride membranes, and incubated with primary antibody overnight at 4°C and 
peroxidase-conjugated secondary antibody at room temperature for 1 h. Enhanced chemilu-
minescence reagent Amersham ECL Western Blotting System (GE Healthcare Bio-Sciences, 
Pittsburgh, PA, USA) was used to detect the signals.

RESULTS

Construction and identification of recombinant expression vectors

To express AKT, recombinant pIRES2-DsRed2-AKT was constructed using the pIRES2-
DsRed2 backbone. The pIRES2-DsRed2-AKT plasmid was transfected into Escherichia coli 
and identified by restriction analysis with EcoRI and BamHI; the AKT fragment was 1443 bp 
(Figure 2). The plasmids were sequenced, and the correct clones were selected.

Figure 2. Restriction analysis of pIRES2-DsRed2-AKT. Lane M1 = λ-EcoT14 I-digested DNA marker; lane 1 = 
pIRES2-DsRed2-AKT digested with EcoRI; lane 2 = pIRES2-DsRed2-AKT digested with EcoRI and BamHI; lane 
M2 = DL2000 marker.
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Evaluation of transfection efficiency

LipofectamineTM 2000 was used to transfect GFbs with pIRES2-DsRed2-AKT. 
pIRES2-DsRed2 and untransfected cells were used as control groups. The expression of 
DsRed was examined under a fluorescence microscope (Figure 3), and photos were taken with 
a digital camera. Red fluorescence of the transfectants was observed 48 h after transfection, 
and the rate was approximately 10%.

Figure 3. Goat fetal fibroblasts 48 h after transfection. A. Bright-field image of control cells. B. Red fluorescence 
of control cells. C. Bright-field image and D. red fluorescence of cells transfected with pIRES2-DsRed2. E. Bright-
field image and F. red fluorescence of cells transfected with pIRES2-DsRed2-AKT.

Expression analysis of AKT in GFbs

Reverse transcription-PCR (RT-PCR) of total RNA from GFbs was performed to am-
plify a 490-bp fragment that included the 3'-end of AKT and the 5'-end of IRES (Figure 4A). The 
fragment was successfully amplified from the cDNA of the transfectants using forward and re-
verse primers (P1 and P2, respectively). PCR of the target segment demonstrated that exogenous 
goat AKT was transcribed in GFbs. By Western blot, AKT was overexpressed in transgenic 
cells, and the molecular mass was estimated to be 55 kDa (Figure 4B). The phosphorylation of 
p70S6K (Thr389) and 4E-BP1 (Thr37/46) was observed in the transgenic and control cells, and 
the transgenic cells had a greater level of phosphorylation (Figure 4B).
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DISCUSSION

As a critical cell-specific serine/threonine protein kinase, AKT is required for cell 
proliferation and metabolism in mammalian cells, and it is a frequently activated oncoprotein 
in human cancer cells (Liu et al., 2013; Mao et al., 2013). The PI3K/AKT pathway has sig-
nificant functions in various cancers. This pathway can be abnormally activated in childhood 
acute lymphoblastic leukemia, acute myelogenous leukemia, chronic myelogenous leukemia, 
and certain pediatric lymphomas and lymphoproliferative disorders (Barrett et al., 2012). 
Overactivation of the PI3K/AKT/mTOR pathway mediates cellular growth and survival in 
the pathogenesis of endometrial cancer (Slomovitz and Coleman, 2012). A positive feedback 
loop, which is generated by the signaling interactome network of autocrine and paracrine 
elements from cancer hypoxic microenvironments, induces extreme robustness in metastatic 
cancer, relapsed leukemia, myeloma, and lymphoma (Radisavljevic, 2013a). Phosphorylated 
AKT is a cancer multidrug resistance locus. Targeting this locus by modulating the oxidant/
antioxidant balance transforms positive feedback loops into negative feedback loops, leading 
to the disappearance of multidrug resistance (Radisavljevic, 2013b). Targeting the AKT locus 
by locus-directed chemotherapy to induce loop conversion is a new approach that is being 
used to control integrative angiogenic robustness and multidrug resistance.

Evidence over the past 15 years has demonstrated the presence of active AKT in the 
nucleus, where it is a fundamental component of important signaling pathways. Nuclear AKT 
counteracts apoptosis by blocking caspase-activated deoxyribonuclease, inhibiting chromatin 
condensation, and regulating cell cycle progression, cell differentiation, mRNA export, DNA 
repair, and tumorigenesis (Martelli et al., 2012). For example, AKT phosphorylates Ser166/186 
of MDM2, which induces its nuclear entry to decrease p53 levels and activity (Feng, 2010). 
The AKT-activated transcription factor nuclear factor kappa B regulates the expression of hun-
dreds of genes through the phosphorylation of IKK (Sempere et al., 2008). The proliferation of 
endothelial progenitor cells is inhibited by the silencing of endogenous DNA binding 1 (Id1), 
but the effects of Id1 transfection are mitigated when PI3K/AKT/NFκB signaling is blocked 
by inhibitors (Li et al., 2012). A β2-adrenergic antagonist significantly induces G1/S phase ar-
rest and apoptosis in pancreatic cancer cells through the Ras/AKT/NFκB pathway (Zhang et 

Figure 4. Expression analysis of AKT in transgenic cell clones by RT-PCR and Western blot. A. Identification of 
transgenic cell clones by RT-PCR. Lane M, DL2000 marker; lane 1, control cells; lane 2, cells transfected with 
pIRES2-DsRed2; lane 3, cells transfected with pIRES2-DsRed2-AKT. B. Western blot analysis of AKT, phospho-
p70S6K (Thr389), and phospho-4E-BP1 (Thr37/46) in goat fetal fibroblasts.
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al., 2011). AKT/NFκB signaling is a significant regulator in normal and cancer cells.
Increasing evidence suggests that AKT mediates mTOR signaling. In this pathway, 

AKT is an upstream regulator of mTOR, and S6K1 and 4E-BP1 are 2 downstream effectors 
of mTOR. S6K1 is activated by mTOR-dependent phosphorylation, and 4E-BP1 is inacti-
vated by mTOR-dependent phosphorylation. AKT activates mTOR signaling through various 
mechanisms and affects the phosphorylation of p70S6K and 4E-BP1. In a model, Ser2448 of 
mTOR is a direct target of phosphorylation by AKT (Navé et al., 1999). In another model, 
AKT phosphorylates TSC1/2 on multiple sites and inhibits TSC1/2 GTPase activity, which, 
in turn, activates Rheb and mTORC1 (Inoki et al., 2002; Potter et al., 2002). Phosphorylation 
and activation of S6K1 by mTORC1 enhance the translation of genes that are involved in 
ribosomal and mitochondrial biogenesis (Hannan et al., 2003; Holz and Blenis, 2005). In this 
study, we examined the regulation of 2 downstream targets of mTORC1, S6K1 and 4E-BP1, 
in Cashmere goat cells with AKT overexpression. Our data confirm that the overexpression 
of AKT induces the phosphorylation of p70S6K (Thr389) and 4E-BP1 (Thr37/46) and that 
mTOR signaling is activated in Cashmere GFbs.

CONCLUSIONS

Exogenous goat AKT was overexpressed in Cashmere GFbs, increasing the phosphor-
ylation of p70S6K (Thr389) and 4E-BP1 (Thr37/46). The overexpression of AKT activates 
mTOR signaling in goat cells.
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