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ABSTRACT. Tumor necrosis factor receptor-associated factor 6
(TRAF6) is a key signaling adaptor molecule for tumor necrosis factor
receptor superfamily and Toll-like receptor/interleukin-1 receptor family
members. It signals the upstream receptors and is involved in a wide
range of biological functions, such as immunity and bone metabolism.
In this report, the TRAF6 gene from the pearl oyster Pinctada martensii
(designated as PmT7RAF6) was identified and characterized. The
obtained full-length Pm7TRAF6 cDNA was 2273 bp, containing a
S'-untranslated region (UTR) of 297 bp, a 3'-UTR of 128 bp with a 42-
bp poly (A) tail, and an open reading frame of 1848 bp that encoded
616-amino acid residues. The deduced protein sequence of PmTRAF6
contained a conserved TRAF family motif including a RING-type zinc
finger, two TRAF-type zinc fingers, and a coiled-coil region followed
by one meprin and TRAF homology domain. Multiple-sequence
alignment indicated that TRAF6 was highly conserved among species,
and PmTRAF6 showed 53% sequence identity to Azumapecten farreri
and Mizuhopecten yessoensis. Furthermore, an amino acid sequence
containing a low-complexity region was inserted in the TRAF6s from
mollusk. Quantitative real-time polymerase chain reaction analysis

Genetics and Molecular Research 13 (4): 10545-10555 (2014) ©FUNPEC-RP www.funpecrp.com.br



Y. Jiao et al. 10546

demonstrated that PmTRAF6 was constitutively expressed in all tissues
studied, with the most abundant mRNA expression in hepatopancreas
and gill in P. martensii. After lipopolysaccharide stimulation, the
expression of Pm7TRAF6 mRNA was dramatically upregulated. These
results suggested that the obtained PmTRAF6 was a member of the
TRAF6 family and perhaps involved in the innate immune response of
pearl oyster.
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Quantitative real-time reverse transcription-polymerase chain reaction

INTRODUCTION

Tumor necrosis factor receptor-associated factors (TRAFs), which function as adap-
tor proteins, are signal transducers for the tumor necrosis factor receptor (TNFR) family and
Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) family members (Bradley and Pober,
2001; Wu and Arron, 2003; Kobayashi et al., 2004). Most of the TRAF family members con-
tain a meprin and TRAF homology (MATH) domain in the C-terminal region and RING-type
zinc fingers in the N-terminal region followed by a coiled-coil domain. The C-terminal MATH
domain is essential for receptor binding. The N-terminal RING-type zinc fingers are crucial
for the activation of the downstream signaling cascades (Lomaga et al., 1999; Ye et al., 2002;
Wang et al., 2010; He et al., 2006, 2013).

In mammals, there are seven known TRAF family members (TRAF1-7) that play es-
sential roles in signal transduction (Qiu et al., 2009; He et al., 2013). In both the gene structure
and protein sequence homology of the C-terminal domain that is responsible for receptor bind-
ing, TRAF6 is the most divergent TRAF (Lomaga et al., 1999). With its special C-terminal
domain, TRAF®6 is the only TRAF that participates in the signaling pathways from the TLR/
IL-1R family (Ye et al., 2002; He et al., 2006). TLR is a member of the pattern recognition
receptors and could identify the pathogen-associated molecular patterns of different pathogens
(He et al., 2013). IL-1 is crucial in the pro-inflammatory effects through the type-1 IL-1R
(He et al., 2006). Although the extracellular domains of TLR and IL-1R are dissimilar, the
cytoplasmic regions of each exhibit functional similarity and share a common motif, which
is termed the TLR/IL-1R domain (Kobayashi et al., 2004). After activating TLR and IL-1R, a
cytoplasmic adapter protein, MyD88, is recruited through their TLR/IL-1R domains, which is
followed by the recruitment of IRAK Ser/Thr kinases, and then by association with TRAF6,
which mediates the activation of downstream signaling via nuclear factor kB (NF-kB) and
activator protein 1. With its capacity to signal a broad array of upstream receptors, TRAF6
has a spectrum of biological functions, such as innate and adaptive immunity, stress response,
bone metabolism, and the lipopolysaccharide (LPS) signaling pathway (Lomaga et al., 1999).
Recently, TRAF6 was reported to be involved in tumor formation and tumor angiogenesis
through its function in the activation of NF-kB and hypoxia-inducible factor-1a (Starczynows-
ki et al., 2011; Sun et al., 2013).

TRAF-6 may be a key molecule that participates in the innate defense system of mol-
lusks (Qiu et al., 2009; He et al., 2013). The pearl oyster Pinctada martensii is the main spe-
cies for marine pearl production in China and Japan. The identification and characterization
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of TRAFG in P. martensii will help our understanding of the innate immune response in pearl
oyster. Although the TRAF6 gene has been cloned and identified in several marine inverte-
brates, such as Mizuhopecten yessoensis (He et al., 2013) and Azumapecten farreri (Qiu et al.,
2009), the TRAF6 gene has not been characterized in detail and identified in P. martensii. To
help our understanding of the innate immune response in pearl oyster, the aim of this research
was to obtain the full-length TRAF'6 gene and to investigate the TRAF6 gene expression pat-
terns in different tissues and the temporal expression after LPS challenge in P. martensii.

MATERIAL AND METHODS
Pearl oyster and immune challenge

Pearl oysters, P. martensii (approximately 2 years of age) were obtained from Liusha-
gang, Zhanjiang, Guangdong Province, China. They were maintained at 25°-27°C in tanks
with recirculating seawater for 1 week before the experiment. In the challenged group, 100 pL.
10 pg/mL LPS (Sigma, USA) was injected into the adductor muscle of the pearl oysters. In
the control group, 100 uL phosphate-buffered saline was injected in the same way. Hemocytes
were collected from at least six pearl oysters 0, 2, 4, 8, 12, 24, and 36 h after injection, im-
mersed in Trizol (Invitrogen, USA), and stored in liquid nitrogen.

Rapid amplification of cDNA ends (RACE)

5'/3'-RACE was applied to obtain the full-length cDNA of Pm7RAF6 using the
SMART RACE cDNA amplification kit (Clontech, Japan). Total RNA for the RACE reaction
was extracted from the hemocytes of P. martensii using Trizol reagent. Gene-specific primers
were designed based on the nucleotide sequences of the Pm7RAF6 cDNA fragment obtained
from the transcriptome of P. martensii (Zhao et al., 2012). Table 1 shows the polymerase chain
reaction (PCR) primers used in this study.

Tablel. Primers for gene amplification and characterization.

Primer Sequence Application
B-actin-F 5-TCCCTGGAGAAGAGC-3' qRT-PCR
B-actin-R 5-AGTTTCGTGGATGCC-3' qRT-PCR
3'RACE-PmTRAF1 5'-ACGGGCATGTAATGGCTTTTTTGTTTGG-3' Inner PCR
3'RACE- PmTRAF 2 5-TCACAGTCGTGTGGTCGATGACCAACGA-3' Outer PCR
5'RACE- PmTRAF 1 5'-ATCCCTCATCACGACTTTGGTGTCCGAA-3' Inner PCR
5'RACE- PmTRAF 2 5'-CAACATACTCTCCGACAACACGGCGTTA-3' Outer PCR
PmTRAF-F 5-GATGGAAACGCTTGTAGCGA-3' qRT-PCR
PmTRAF-R 5-AGCACAGTCAAAGGGAGGAA-3' qRT-PCR

DNA sequencing and bioinformatic analysis

The PCR products of the 5'- and 3'-ends were extracted, cloned into the pGEM-T easy
vector (Promega), and sequenced. All the obtained sequences were analyzed using the Basic
Local Alignment Search Tool (BLAST) available at the National Center for Biotechnology
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Information (NCBI; http://www.ncbi.nlm.nih.gov/). The open reading frame (ORF) was ob-
tained using the ORF Finder tool (http://www.ncbi.nlm.nih.gov/gorf/orfig.cgi). The molecular
weight and theoretical isoelectric point were analyzed using a ProtParam tool (http://web.
expasy.org/cgi-bin/protparam/protparam). The MEGA 4.0 software was used to construct the
phylogenetic tree.

Tissue-specific expression and temporal expression of Pm7RAF6 after LPS stimulation

The adductor muscle, gill, mantle, hepatopancreas, gonad, and hemocytes were col-
lected and immediately stored in liquid nitrogen. Total RNA was isolated using Trizol re-
agent according to manufacturer instructions. RNA integrity was analyzed by electrophoresis
on 1.2% agarose gels. The RNA concentration was examined using a NanoDrop ND1000
spectrophotometer. The total RNA was reverse transcribed with oligo (dT)16 and M-MLV
reverse transcriptase (Clontech). Pm7RAF6 mRNA expression was determined by quantita-
tive real-time reverse transcription-PCR (qQRT-PCR) with B-actin as an internal control (Jiao et
al., 2012). Amplifications were conducted using SYBR green according to the manufacturer
protocol. The qRT-PCR assay was performed in a C1000™ thermal cycler CFX96™ real-time
system (Bio-Rad, USA).

Statistical analysis

The data from the experiments were analyzed using SPSS 13.0. P values less than 0.05
were considered to be statistically significant.

RESULTS
c¢DNA cloning, sequencing, and characterization of the Pm7RAF6 gene

Based on the unigene sequence, which was annotated as TRAF6 in the transcriptome
database of P. martensii, four PmTRAF6 gene-specific primers were designed to amplify
the 5'- and 3'-nucleotide sequences by 3'- and 5'-RACE technology. The PCR products were
cloned and sequenced. Figure 1 shows that the complete sequence of the PmTRAF6 cDNA
was 2273 bp, containing a 5'-untranslated region (UTR) of 297 bp, an ORF of 1848 bp, and a
3'-UTR of 128 bp with a 42-bp poly (A) tail.

Characterization of the PmTRAF6 deduced amino acid sequence

The deduced protein sequence of PmTRAF6 was 616 amino acids with a mature mo-
lecular weight of 70.2 kDa and a theoretical isoelectric point of 6.42. The deduced amino acid
sequence of PMTRAF6 contained characteristic TRAF family motif predicted by the SMART
program. One RING-type zinc finger was located between amino acids 60 and 98. There were
two TRAF-type zinc fingers, which were found at amino acids 143-195 and 197-244. One
coiled-coil region was located between amino acids 428 and 458, followed by one MATH
domain that was predicted between amino acids 468 and 595 (Figure 1).
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acatgggggggatlicceecactetglicaggacat taggaagt Lgaaaglaggaaglcgeacgaaggagatatctagiitgatgtigggtatettttttaaagtct
106 tatgtttaaattctaataactactggagaaatagaatctaccatacagtacatctggataacaggtattaggaatagaacagattgaaggtatgtaaaatgaaca
1 M ASNDN
211 ctgtactgaagacaaagtctccacatattgatatgacttagtactattgtgacaagatggaaagttcacgacacagtttaatgactcATGGCATCGAATGATAAC
766 Q NDLQSREPHTRTSPPQSSGTYGSGSGDSFGHAQ
316 GGAGGACAAAATGATTTACAGTCCAGAGAACCACATACCCGGACTAGCCCGCCTCAAAGTTCCGGCACGTACGGATCAGGATCCGGAGATTCCTTCGGACACCAA
428 RDEGYDLEF T LRDEKYDCPICLLVLRDPYQT® QCG
421 AGTCGTGATGAGGGATATGATTTGGAATTTATTTTACGTGACGAAAAATATGACTGTCCTATTTGTTTACTGGTTTTACGTGATCCTTATCAAACTCAGTGTGGA
770 RF CQRCIFRWLRDSDQRCPIDNAVLSESMLTFPDN
526 CATCGTTTCTGCCAGCGGTGTATCTTCAGATGGCTCAGGGATTCTGATCAGCGTTGTCCTATCGATAACGCCGTGTTGTCGGAGAGTATGTTGTTCCCGGACAAC
112F A K REIMGLQVMCPNEKEKEGCNHTIETLIEKHL® QHHTLTDS
631 TTTGCCAAGCGTGAAATTATGGGATTACAGGTCATGTGTCCTAACAAGAAGGAAGGTTGTAATCATATTGAAACCCTTAAGCATTTACAGCATCATTTAGATTCA
l47Cc P F K CEPCPNEKCSHTILLREKDLEK QHLDHVCVKREKTIDQ
736 TGTCCATTTAAATGTGAACCCTGTCCTAATAAATGCAGTCATATATTACTACG GACCTTAAACAGCATCTTGATCATGTCTGTGTGAAACGAAAGATACAG
82cHQCPEYTITTAEQLEDHLETEKETCAMSMTETCPHCNASNM
841 TGTCATCAATGCCCAGAGTATATCACAGCGGAACAACTAGAGGATCACTTAGAGAAGGAATGTGCTATGTCTATGACAGAGTGTCCACATTGTAATGCCTCTATG
20M R EQ T KR HIDHDCMEKY CIDOCSTFEKEKLSGCTASNTI® QRSGEG
946 ATGCGGGAACAGATTAAGAGGCATATAGACCATGATTGTATGAAGGTTTGCATCGACTGTTCATTCAAGAAGCTAGGATGTACCGCATCAAATATCCAACGTGGA
22E M G KHRQDQTQFHMNILMCRALVVITEEKLNTITTPDLL
1051 GAGATGGGGAAACACAGACAGGACCAAATCCAGTTCCATATGAACCTTATGTGTAGAGCTCTGGTAGTCATAACTGAAAAACTGAACATAACACCCGATCTATTA
2800 P QV GATTSAATAEILISYNSCVNSLADLRNLSETL
1156 CACCCTCAAGTTGGTGCCACGACATCGGCCGCCACTGCCGAAATCTCTTATAACTCCTGTGTTAATAGCTTAGCAGATCTCCAACGGAATCTTTCAGAAACTCTC
322A S LNLNNSPVVPTISQEFLNQPVSTIMNMTSPTVVSST
GTTTGAATTTGAATAATTCACCAGTGGTGCCCACGATATCTCAGTTTCTC CAACCCGTATCAACCATTATGACCTCTCCCACTGTGGTATCATC
337E S PRSHSRYVYDDAQRLNSDQTKVESEVTYTSVPSVD
13668 GAATCTCCGCGGTCTCACAGTCGTGTGGTCGATGACCAACGACTAAATAGTGATCAAACTAAAGTCGAGTCAGAAGTAACGTATACCTCAGTACCCTCTGTTGAC
32Q EGALRVPFDRLETFQSMEDQNATQDESLARHEHTLTI
1471 CAAGAGGGGGCGCTTCGAGTCCCATTTGATCGCTTAGAATTCCAGTOCATGAAAGATCAGAATGCTACGCAAGATGAAAGTTTAGCACGACACGAACACTTGATA
427V EM K HKVETSEKNSSILLRRVRLLENTTLAETFETGTRA
1576 GTAGAGATGAAGCATAAGGTAGAGACGTCAGAGAAAAATAGCTCTATTTTATTAAGAAGGGTCAGATTATTAGAAAATACATTAGCCGAGTTTGAAGGACGGGCA
462C NG FF VWKV KNYSKVYRREAELGETTATIHSPAFTYSS
1681 TGTAATGGCTTTTTTGTTTGGAAAGTTAAAAATTACTCTAAATATAGACGTGAAGCCGAGTTAGGCGAGACTACTGCCATCCATAGCCCTGCGTTTTACTCCAGT
497C Y G Y KL CT RANLNGVDAARGTHLSTITFITHFMQGETFD
1786 TGTTATGGATATAAGTTATGTATTCGCGCCAATTTAAATGGTGTTGATGCCGCAAGGGGAACTCATTTATCAATTTTCATTCATTTCATGCAAGGGGAATTTGAC
52D I L DWPFSGRIMLTVMDAQENQAMETLRHHVMNMETLYVYAK
1891 GATATCTTGGACTGGCCGTTCAGTGGCCGAATTATGTTGACCGTCATGGACCAAAATCAAGCGATGGAATTACGTCATCACGTGATGGAAACGCTTGTAGCGAAA
567P NL AATFQKPVTPRNIKSGFGYMETFLPLTVLDNSMNYI
1996 CCCAACTTGGCAGCATTCCAAAAGCCTGTGACCCCGCGAAATCATAAAGGCTTTGGC TGGAATTCCTCCCTTTGACTGTGCTAGACAA ¥
602R N D T L I I K CHVIQTN=*
2101 AGAAATGATACTCTTATTATTAAGTGTCATGTTATTCAAACAAATTGAaacatglatgatlgatggtit taatglgataccagtiaatigataaat tgatlaaagata

2206 tatctgatatatgattaaattttg

Figure 1. Nucleotide and amino acid sequence of PmTRAF6. Numbers on the left indicate positions of the
nucleotides in the PmTRAF6 cDNA sequence and the amino acid residues in the deduced protein. The sequence
motif RING-type zinc finger (amino acids 60-98), two TRAF-type zinc fingers (amino acids 143-195 and 197-244),
coiled-coil region (amino acids 428-458), and the MATH domain (amino acids 468-595) are underlined.

Homology analysis of PmTRAF6

The NCBI protein BLAST program was used to analyze the homology of the de-
duced amino acid sequence of PnTRAF6. PmTRAF6 had significant homology to a variety of
TRAF6s that were previously submitted to the database. The sequence of PmMTRAF6 showed
53% sequence identity to the TRAF6 proteins of A. farreri and M. yessoensis, 47% identity to
that of Euprymna scolopes, and 32% identity to that of Strongylocentrotus purpuratus. Multi-
ple-sequence alignment with other known TRAF6 proteins showed that most of the identities
were located in the characteristic TRAF6 domains (Figure 2). These highly conserved do-
mains indicated that the function of PmTRAF6 was similar to that of other identified TRAF6s.
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Interestingly, similar to A. farreri (Qiu et al., 2009), additional amino acids were located be-
tween the second TRAF domain and the coiled-coil region was inserted in P. martensii, M.
yessoensis, E. scolopes, and S. purpuratus.
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Figure 2. Alignment of the entire amino acid sequence of PmTRAF6 with other known TRAF6 sequences. Identical
amino acids are highlighted in black and similar amino acids are highlighted in gray. The origin for each TRAF6
sequence is indicated on the left.
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Further analysis of this insertion using the SMART software indicated that a low-com-
plexity region (LCR) was contained in the TRAF6 proteins of mollusk, including P. martensii,
A. farreri, and M. yessoensis (Figure 3).

20 30 a0 [
I | | | |
Pinctada martensii YMSCVN QRN SETLASLNLNNSPVV TISQFENBPVET - - IMISPTVY TESFE
Azumapecten farreri -EQQSS SCLIEOASMA - IGSOLGOQLBCLPORIERBMOLESCNILEHGLSE EEREG
Mizuhopecten yessoensis GEQQ S8 SGLIEQASMY - FGPOLGOQLBIGLPHRIERGOLESSCNTLEHGSSE SEREG

wiss wil s
Pinciada mariensii SHSRVV E\I'TY VPS
Azumapecten farreri EAMGRR TI&M NPNPG
Mizufigpecten yessvensis EAMGRR TISM NMHNPG

Figure 3. Analysis of the inserted amino acid sequence. The region containing the inserted sequence was analyzed
using the SMART tool. The underlined sequences were predicted low-complexity regions.

In order to analyze the phylogenetic relationship between PmTRAF6 and other
TRAF6s, a phylogenetic tree was constructed using the MEGA 5.0 software. The results
indicated that P. martensii was clustered with TRAF6s from A. farreri and M. yessoensis

(Figure 4).
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Figure 4. Phylogenic tree showing the relationship between PmTRAF6 and TRAF6s from other species. Phylogenic
analysis was performed using the maximum likelihood method in MEGA 5.0 based on the sequence alignment

results.
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Quantitative analysis of PmTRAF6 gene expression in different tissues

Next, qRT-PCR analysis was performed to determine the tissue-specific expression
of PmTRAF6 mRNA using B-actin expression as an internal control. Pm7RAF6 mRNA
was constitutively expressed in all of the tissues detected (adductor muscle, gill, mantle,
hepatopancreas, gonad, and hemocytes). The highest expression was observed in the hepa-
topancreas and gill, while a relatively lower expression level was detected in the hemocytes
(Figure 5).
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Figure 5. Expression patterns of Pm7RAF6 mRNA in different tissues. Quantitative real-time reverse transcription-
polymerase chain reaction (qQRT-PCR) was performed with RNA samples from the adductor muscle, gill, mantle,
hepatopancreas, gonad, foot, and hemocytes. The pearl oyster B-actin gene was used as an internal control. Same
letters above the bars represent no significant differences at the P > 0.05 level. Different letters above the bars
represent significant differences at the P <0.05 level.

Temporal expression pattern of Pm7RAF6 after LPS stimulation

To validate the function of Pm7RAF6 in the immune response, we analyzed the tem-
poral expression of the Pm7RAF6 gene in hemocytes after LPS stimulation by qRT-PCR.
The expression level of PmTRAF6 was significantly increased 4 h after stimulation and was
4.02-fold higher than that of the control. Then, the expression level gradually decreased and
returned to an expression level that was similar to that of the control 24 h after stimulation
(Figure 6).
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Figure 6. Expression patterns of Pm7RAF6 mRNA after 11pop01ysacchar1de (LPS) stimulation. qRT-PCR was
performed using the RNA samples from hemocytes 0, 2, 4, 8, 12, 24, and 36 h after LPS stimulation. The pearl
oyster 3-actin gene was used as an internal control. Same letters above the bars represent no significant differences
at the P> 0.05 level. Different letters above the bars represent significant differences at the P < 0.05 level.
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DISCUSSION

The IL-1R/TLR superfamily plays critical roles in the innate immunity response to
infection and injury (O’Neill, 2002). TRAF has been observed as the major signal transducer
for the TNFR and IL-1R/TLR superfamilies. Additionally, numerous biological functions are
mediated by TRAF through the induction of cell survival, proliferation, differentiation, and
death (Kobayashi et al., 2004, 2009; Lu et al., 2013). TRAF®6 is the only TRAF that is crucial
for MyD88-dependent signaling pathways originating from the IL-1R/TLR superfamily. Thus,
TRAF6 is functionally important in innate immunity. The first experimentally identified mollus-
can TRAF6 was obtained from 4. farreri (CfFTRAF6) (Qiu et al., 2009). CfTRAF6 mRNA ex-
pression was greatly inhibited by peptidoglycan, indicating its function in the immune response
of scallop. Recently, He et al. (2013) obtained the full-length TRAF6 cDNA from M. yessoensis
using RACE technology and observed increased TRAF6 mRNA expression after Vibrio anguil-
larum challenge. TRAF6 was also found in Drosophila melanogaster (DmTRAF6). DmTRAF6
was highly homologous to mammalian TRAF6 and was also identified as a downstream adaptor
for TLR (Shen et al., 2001). These reports suggested that TRAF6 was highly conserved and
functionally important in the innate immunity of organisms ranging from insect to mammal.
To help our understanding of the innate immunity in pearl oyster, we obtained the TRAF6 gene
from P. martensii and identified its function in the innate immune response.

The full-length Pm7TRAF6 gene was 2541 bp and encoded 616 amino acids. The de-
duced protein sequence of PmTRAFG6 shared a high degree of identity with other TRAF6s.
Meanwhile, PmTRAF6 also contained the three conserved TRAF6 motifs, suggesting func-
tional homology with other TRAF6s. Comparing TRAF6s from vertebrate and fruit fly re-
vealed an insertion in the TRAF6 protein sequences of marine invertebrate, including P. mar-
tensii, M. yessoensis, E. scolopes, S. purpuratus, and A. farreri. Among these five TRAFG6s,
only the TRAF6s of mollusk were predicted to contain an LCR. LCRs in a protein are regions
of biased composition, normally consisting of a regular repeat, cryptic repeat, and single-
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amino acid repetitions. These LCRs could provide abundant material for new functions (Rado-
Trilla and Alba, 2012). Additionally, these regions are not strongly conserved in length and
evolve rapidly, although many participate in crucial molecular functions (Li and Kahveci,
2006). Some types of LCRs are usually found in proteins with particular functional classes, es-
pecially transcription factors and protein kinases (Faux et al., 2005). Compared with proteins
without LCRs, proteins containing LCRs tend to have more interactions with other proteins
(Faux et al., 2005). We proposed that TRAF6s in mollusk may have the ability to combine
with other receptors and mediate other signal transductions, but this requires further experi-
mental validation.

To explore the biological function of PmTRAF6 in P. martensii, tissue expression pat-
terns were investigated using qRT-PCR. PmTRAF6 mRNA was highly expressed in the hepa-
topancreas and gills. The hepatopancreas of mollusks secretes various enzymes to hydrolyze
microorganisms (Tiscar and Mosca, 2004). The molluscan gill is the main interface between
aquatic organisms and the external environment and is considered as the first line of defense
against bacterial infection (Lee et al., 2013). The higher expression of PmTRAF6 in these two
organs suggested that it plays a role in the innate immune response.

The hemocytes of mollusk were believed to play crucial roles in the innate immune
response. However, a relatively low expression level was observed in hemocytes, which was
similar to the expression in hemocytes of 4. farreri (Qiu et al., 2009). We speculated that the
expression of Pm7RAF6 in hemocytes may be induced in a stressed state. Then, the temporal
expression of Pm7RAF6 after LPS challenge in hemocytes was examined to determine if Pm-
TRAF6 was involved in the innate immune response. LPS molecules are large and found in the
outer membrane of Gram-negative bacteria. LPS functions as an endotoxin that elicits a strong
immune response in animals (Kilér et al., 2013). In mammals, LPS responses are mediated by
TLR4 (Chow et al., 1999). As the key signaling adaptor in the TLR signal pathway, TRAF6
could transmit the LPS signal to activate a transcription factor, NF-xB, and other downstream
kinases (Wong et al., 2004). In P. martensii, PnTRAF6 increased significantly in the first 4 h
after LPS treatment, suggesting that PmTRAF6 is involved in LPS signaling and thus plays a
role in the innate immune response of P. martensii.

CONCLUSION

In conclusion, using the partial sequence obtained from the transcriptome of P. mar-
tensii, we obtained the full-length Pm7RAF6 cDNA and analyzed the characteristics of the
OREF and the peptide sequence. The deduced protein sequence of PmTRAF6 contained a con-
served TRAF family motif and was highly conserved among species. Furthermore, an LCR
was inserted in the molluscan TRAF6s that was not present in the TRAF6 of other species.
PmTRAF6 mRNA was highly expressed in the hepatopancreas and gill. After LPS stimulation,
the expression of Pm7TRAF6 mRNA was significantly upregulated, suggesting that PmTRAF6
was involved in the innate immune response of pearl oyster. Further studies on the mechanism
that controls the function of PmTRAF6 are necessary.
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