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ABSTRACT. Genetic regulatory networks are the key to understanding 
biochemical systems. One condition of the genetic regulatory network 
under different living environments can be modeled as a synchronous 
Boolean network. The attractors of these Boolean networks will help 
biologists to identify determinant and stable factors. Existing methods 
identify attractors based on a random initial state or the entire state 
simultaneously. They cannot identify the fixed length attractors 
directly. The complexity of including time increases exponentially with 
respect to the attractor number and length of attractors. This study used 
the bounded model checking to quickly locate fixed length attractors. 
Based on the SAT solver, we propose a new algorithm for efficiently 
computing the fixed length attractors, which is more suitable for large 
Boolean networks and numerous attractors’ networks. After comparison 
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using the tool BooleNet, empirical experiments involving biochemical 
systems demonstrated the feasibility and efficiency of our approach.

Key words: Bounded model checking; Genetic regulatory network; 
Attractor; SAT solver; Synchronous Boolean network

INTRODUCTION

Currently biologists use Boolean networks (Glass, 1985) to describe biological regu-
latory networks that function in biochemical systems to thoroughly understand the operat-
ing mechanisms of organisms. Kauffman (1995) previously described this phenomenon. In 
General, we can consider one condition of an organism and express its behavior using the 
genetic regulatory networks (GRNs). Next, the GRN can be modeled as a Boolean network. 
The genes follow Boolean rules to activate (1) and inhibit (0) the following genes according to 
the activities of their molecular inputs. All activities will follow a finite trajectory in their state 
space. Ultimately, the trajectory converges onto attractors that stabilize the system. Therefore, 
identifying the attractor is important for increasing the understanding of biochemical systems, 
particularly those in the cancer cells.

For the same GRNs, different modeling methods can be used, such as synchronous 
(Farrow et al., 2004; Fauré et al., 2006; Remy et al., 2006), asynchronous (Fauré et al., 2006; 
Garg et al., 2008) and semi-asynchronous (Fauré et al., 2006) models. Dubrova et al. (2005) 
presented a basic algorithm known as BooleNet to identify attractors in synchronous Boolean 
networks. Zhao (2005) demonstrated that the computing attractors in synchronous Boolean 
networks represent a nondeterministic polynomial time complete problem. Ay et al. (2009) de-
veloped a faster method for identifying attractors of self-loops and simple-loops. All of these 
tools are based on binary decision diagram (BDD) package (Lee, 1959).

This study used bounded model checking (BMC) (Clarke et al., 2001; Biere et al., 
1999) to search for attractors in synchronous Boolean networks. Combined with the BMC 
theory, we propose a new algorithm for quickly identifying fixed length attractors in syn-
chronous Boolean networks based on the SAT solver (Moskewicz et al., 2001; Goldberg and 
Novikov, 2002). After comparison with BooleNet (Dubrova et al., 2005), our experimental 
results showed that our algorithm was more efficient and feasible for large synchronous Bool-
ean networks; it can also be used for analyzing actual large-scale biochemical system models.

This paper is organized as follows: we first provide a brief review of the synchronous 
Boolean network and its basic definitions. In the following subsection, our new theory and an 
algorithm are explained. Next, a biological regulatory network is used as a simple example 
to demonstrate the computation of attractors. In the Results section, we use 7 benchmarks to 
demonstrate that our approach is highly efficient and feasible. The top 5 benchmarks are from 
realistic biochemical systems. The remaining are randomly generated benchmarks.

MATERIAL AND METHODS

Synchronous Boolean networks and basic definitions

In general, a synchronous Boolean network contains n nodes (x1, x2, x3…, xn), with 
each node updating itself with each other in a synchronous manner (Milligan and Wilson, 
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1993; Farrow et al., 2004). Each node has only 1 Boolean value: 1 (ON) or 0 (OFF) at 1 mo-
ment. Commonly, a synchronous Boolean network’s value 1 (Active) or 0 (Inhibit) represents 
the status of its biological regulatory network. Therefore, we can describe the synchronous 
Boolean network using the following equations:

x1,t+1 = f1 (x1,t, x2,t, x3,t, …, xn,t); 

x2,t+1 = f2 (x1,t, x2,t, x3,t, …, xn,t);

x3,t+1 = f3 (x1,t, x2,t, x3,t, …, xn,t);

…

xn,t+1 = fn (x1,t, x2,t, x3,t, …, xn,t);

The above equations can also be simplified as shown below:

Xt+1 = F (Xt) (Equation 1)

Here, xt = (x1,t, x2,t, x3,t, …, xn,t) represents a state at time t, xi,t ∈{0,1}. The translation 
function F = (f1, f2, f3, … , fn) is the Boolean function from {0,1}n to {0,1}n, that is, the state 
at time t + 1 can be determined using the previous state at time t.

Definition 1. Predecessor/Successor: For a synchronous Boolean network with n 
nodes and a translation function F, if Xt+1 = F (Xt), state Xt+1 is the successor of state Xt and 
state Xt is the predecessor of state Xt+1, respectively. Next, we use (Xt, Xt+1) to represent that Xt+1 
is the successor state of Xt.

Definition 2. An Attractor Att: a set of states to which each state can return itself after 
finite translation computing by F. Length(Att) is the state number of attractor Att. UAtt represents 
all attractors whose lengths are n in a Boolean network.

Theoretical results

This subsection presents our theory and algorithm. We also demonstrate, using a bio-
logical regulatory network, how to compute the fixed length attractors. Equation 1 is the sim-
plified form of the synchronous Boolean network. However, we can transform this equation 
to the following expression:

F (Xt, Xt+1) = 1 (Equation 2)

Here, all variables are the same as those in Equation 1. Based on the definition of an 
attractor (Definition 2), an attractor is a loop with finite states. In this loop, each state can re-
turn itself to a particular state through fixed transitions; that is, all states can return themselves 
after Length(Att) transitions. Therefore, we use the following equation to indicate an attractor:

  (Equation 3) 

 

(Equation 3)
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Equation 3, T is the propositional formula, which is unfolded from time step m to time 
step m+length-1, where m is a state at any time and length is an attractor length. Addition-
ally, “⋀” and “” represent “AND” and “NOR” operators in Boolean logic, respectively. The 
propositional formula T represents an attractor, in which a state Xi will return to itself after 
length transition steps.

Quickly locate fixed length attractors (QLFLA) algorithm

Based on BMC theory and Equations 3, we propose an algorithm for quickly locat-
ing fixed length attractors using the pseudo code shown below. In Algorithm 1, variable “Att” 
indicates any attractor whose length is n; “Att_num” is the number of attractors whose length is n; 
“UAtt” is the union set of attractors whose length is n. In the pseudo code, “Sat(T)” corresponds 
to the so-called SAT solver. Furthermore, if there is any assignment of all variables, the SAT 
solver takes an expression and returns the result of true. Otherwise, it will return the result of 
false. In contrast, there is no assignment that qualifies this expression. The symbol “←” is as-
signment from left to right.

Algorithm 1 QLFLA on BMC

Input: Propositional formula T and length n.
01: Initial:
UAtt ← ;
Att ← ;
Att_num ← 0;
02: While (Sat(T)) do
03: Xt ← Sat(T);
04: Att ← Att Xt;
05: For (j←1; j < n; j ← j+1)
06: Xt+1 ← F(Xt);
07: Xt ← Xt+1;
08: Att ← Att Xt;
09: End For
10: print(Att);
11: UAtt ← UAtt Att;
12: Att_num ← Att_num+1;
13: T ← T ˄¬Att;
14: Att ← ;
15: End While
16: Output: return Att_num, UAtt;

A biological regulatory network example

Based on previous studies (Glass and Kaufmann, 1973; Heidel et al., 2003), one con-
dition of sigmoidal kinetics systems was chosen from a complicated environment, which is 
shown using the following differential equations:
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Based on a study of Heidel et al. (2003), we simplified the above differential equations 
as the Boolean network shown in Figure 1 (Boolean network) and its Boolean translation func-
tion. This is a nonlinear logic function with negative feedback.

x1,t+1 = x2,t ˄ x3,t;

x2,t+1 = x1,t;

x3,t+1 = ¬x2,t;

In this example, there are 3 Boolean nodes: x1, x2, and x3 and. If we wish to compute 
whether an attractor exists with length 2, the propositional formula can be used: T = (Xi, Xi+1) ⋀ 
(Xi+1, Xi+2) ⋀ (Xi ⨀ Xi+2). After computing this propositional formula based on the SAT solver 
(Moskewicz et al., 2001; Goldberg and Novikov, 2002), we can easily obtain the attractor with 
the above conditions: (011,100) ∧ (100,011) ∧ (011⨀011). Next, we obtain an attractor whose 
length is 2, as: (011) → (100) → (011).

 

 

 

 

Figure 1. A Boolean network of the sigmoidal kinetics system. Node x1 actives node x2; node x2 inhibits x3; node x3 
and x2 active node x1. All nodes update themselves by synchronous mechanism.
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RESULTS

In this section, we compare our results and those of previous studies obtained using our 
algorithm (QLFLA) and BooleNet (Dubrova et al., 2005). The experimental results show that 
our algorithm is efficient and highly feasible particularly for large biological regulatory networks. 
The benchmarks contain 7 different test cases. The top 5 are Boolean models generated from 
realistic GRNs. The last 2 are randomly generated networks. All experiments can be performed 
on an Intel CoreTM CPU 4300 1.80 GHz with 2 GB memory on an Ubuntu 9.04 Linux server.

The top 4 Boolean networks were generated from 5 organisms, including Arabidopsis 
thaliana (Chaos et al., 2006), budding yeast (Li et al., 2004), Drosophila melanogaster (Albert 
and Othmer, 2003), T-helper cell (Mendoza and Xenarios, 2006), and protein (Gonze and Gold-
beter, 2001; Heidel et al., 2003). In addition to these 5 classical benchmarks, we provide the 
2 other randomly generated Boolean networks. All experimental results are shown in Table 1.

Benchmark	 Nodes	              Time (s)		                   SCAs number		  Length

		  BooleNet	 FSSBN	 BooleNet	 FSSBN
		  (Dubrova et al., 2005)		  (Dubrova et al., 2005)

Arabidopsis thaliana (Chaos et al., 2006) 	     15	 0.024	 0.011	 10	 10	   1
Budding yeast (Li et al., 2004)	     12	 0.042	 0.020	   7	   7	   1
Drosophila melanogaster (Albert and Othmer, 2003)	     52	 Timeout	 0.078	 E	   7	   1
T-helper cell (Mendonza and Xenarios, 2006)	     23	 0.045	 0.018	   3	   3	   1
Protein (Gonze and Goldbeter, 2001)	     30	 Timeout	 85.62	 E	 35790267	 30
Random Network 1	 1375	 Timeout	 0.103	 E	   0	   1
Random Network 2	 2095	 Timeout	 0.318	 E	   1	   1

Table 1. Experimental results of seven models.

Table 1 shows the runtime of Algorithm 1 (QLFLA) and BooleNet (Dubrova et al., 
2005) under the same conditions. “Timeout” represents the running time over 12 x 3600 = 
43,200 s. “E” indicates that no result was returned. The 4 testcases (D. melanogaster, protein, 
and random network 1 and 2) show that our algorithm can handle larger networks and compute 
their attractors in a short amount of time. However, BooleNet cannot be used to obtain these 
results. For the rest testcases, out algorithm is at least twice as faster as BooleNet. The experi-
mental results demonstrate that our algorithm is highly efficient for the large Boolean network 
and for identifying numerous attractors in Boolean networks.

DISCUSSION

We applied BMC to biological regulatory networks of biochemical systems. We also 
proposed a new algorithm for quickly locating fixed length attractors based on the SAT solver. 
In addition, we used 5 classical realistic biological networks and 5 random networks to dem-
onstrate that our algorithm is efficient and highly feasible for examing larger networks and 
numerous attractors in the same Boolean networks. In the future, we will cooperate with biolo-
gist to apply our algorithm to larger and more realistic biological regulatory networks.

ACKNOWLEDGMENTS

Research supported by the Fundamental Research Funds for the Central Universi-



4244

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 14 (2): 4238-4244 (2015)

X. Li et al.

ties  (Grant #ZYGX2011YB022), the National Natural Science Foundation of China (Grant 
#61272175, and #973 Foundation #2010CB328004).

REFERENCES

Albert R and Othmer HG (2003). The topology of the regulatory interactions predicts the expression pattern of the segment 
polarity genes in Drosophila melanogaster. J. Theor. Biol. 223: 1-18.

Ay F, Xu F and Kahveci T (2009). Scalable steady state analysis of Boolean biological regulatory networks. PLoS One 
4: e7992.

Biere A, Cimatti A, Clarke E and Zhu Y (1999). Symbolic Model Checking Without BDDs. In: Tools and Algorithms 
for the Construction and Analysis of Systems Lecture Notes in Computer Science (Cleaveland WR, ed.). Springer, 
New York, 193-207.

Chaos A, Aldana M, Espinosa-Soto C and León BGP (2006). From genes to flower patterns and evolution: dynamic 
models of gene regulatory networks. J. Plant Growth Regul. 25: 278-289.

Clarke E, Biere A, Raimi R and Zhu Y (2001). Bounded model checking using satisfiability solving. Formal Methods 
System Design 19: 7-34.

Dubrova E, Teslenko M and Martinelli A (2005). Kauffman Networks: Analysis and Applications. In: 484 Proceedings 
of the 2005 IEEE/ACM International Conference on Computer-aided Design, IEEE Computer Society, Washington, 
479.

Farrow C, Heidel J, Maloney J and Rogers J (2004). Scalar equations for synchronous Boolean networks with biological 
applications. IEEE Trans. Neural Netw. 15: 348-354.

Fauré A, Naldi A, Chaouiya C and Thieffry D (2006). Dynamical analysis of a generic Boolean model for the control of 
the mammalian cell cycle. Bioinformatics 22: e124-e131.

Garg A, Di Cara A, Xenarios I, Mendoza L, et al. (2008). Synchronous versus asynchronous modeling of gene regulatory 
networks. Bioinformatics 24: 1917-1925.

Glass L (1985). Boolean and Continuous Models for the Generation of Biological Rhythms. In: Dynamical Systems and 
Cellular Automata (Demongeot J, Goles E and Tchuente M, eds.). Academic Press, London, 197-206.

Glass L and Kauffman SA (1973). The logical analysis of continuous, non-linear biochemical control networks. J. Theor. 
Biol. 39: 103-129.

Goldberg E and Novikov Y (2002). BerkMin: a Fast and Robust SAT-solver. Proceedings of Design, Automation and Test 
in Europe Conference, Washington, 142-149.

Gonze D and Goldbeter A (2001). A model for a network of phosphorylation-dephosphorylation cycles displaying the 
dynamics of dominoes and clocks. J. Theor. Biol. 210: 167-186.

Heidel J, Maloney J, Farrow C and Rogers J (2003). Finding cycles in synchronous Boolean networks with applications to 
biochemical systems. Int. J. Bifurcat. Chaos 13: 535-552.

Kauffman S (1995). At Home in the Universe. Oxford University Press, New York.
Lee C (1959). Representation of switching circuits by binary-decision programs. Bell System Tech. J. 38: 985-999.
Li F, Long T, Lu Y, Ouyang Q, et al. (2004). The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci. U. 

S. A. 101: 4781-4786.
Mendoza L and Xenarios I (2006). A method for the generation of standardized qualitative dynamical systems of regulatory 

networks. Theor. Biol. Med. Model. 3: 13.
Milligan DK and Wilson MJD (1993). The behaviour of affine boolean sequential networks. Conn. Sci. 5: 153-167.
Moskewicz MW, Madigan CF, Zhao Y and Zhang L (2001). Chaff: Engineering an Efficient SAT Solver. Proceedings of 

the 38th Design Automation Conference, 530-535.
Remy E, Ruet P, Mendoza L and Thieffry D (2006). From logical regulatory graphs to standard petri nets: dynamical roles 

and func-tionality of feedback circuits. Trans. Comput. Syst. Biol. 4320: 56-72.
Zhao Q (2005). A remark on “scalar equations for synchronous Boolean networks with biological applications” by C. 

Farrow, J. Heidel, J. Maloney, and J. Rogers. IEEE Trans. Neural Netw. 16: 1715-1716.


