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ABSTRACT. Trefoil factors, which bear a unique 3-loop trefoil 
domain, are a family of small secretory protease-resistant peptides 
(7-12 kDa) discovered in the 1980s. Trefoil factor 2 (TFF2) is a 
unique member of trefoil factors family that plays important roles 
in gastrointestinal mucosal defense and repair. However, few studies 
have characterized the miRNA expression patterns in TFF2 knock-out 
mice. In this study, we investigated the regulatory role of miRNAs in 
TFF2 knock-out mice. Whole miRNome profiling for TFF2 knock-out 
mice and wild-type mice were downloaded from the Gene Expression 
Omnibus database. A total of 14 differentially expressed miRNAs were 
identified using the limma package. Target genes for 2 differentially 
expressed miRNAs were retrieved from 2 databases. After mapping 
these target genes into STRING, an interaction network was 
constructed. Gene Ontology analysis suggested that the differentially 
expressed miRNAs are involved in cyclic AMP metabolism and the 
growth process. Additionally, dysregulated miRNAs target pathways 
of transforming growth factor-beta signaling pathway and cytokine-
cytokine receptor interaction. Our results suggest that miRNAs 
may play important regulatory roles in processes involving TFF2, 
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particularly in the regulation of signal transduction pathways. However, 
further validation of our results is needed.
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INTRODUCTION

Trefoil factors (TFFs), which bear a unique 3-loop trefoil domain, are a family of 
small secretory protease-resistant peptides (7-12 kDa in mammals) discovered by Thim (1989) 
and Thim et al. (1982). TFFs play crucial roles in gastrointestinal mucosal defense and repair 
(Wong et al., 1999; Taupin and Podolsky, 2003; Kjellev, 2009). These peptides are thought to 
serve as growth factors and were found to be overexpressed during inflammatory processes 
and the progression of some tumors, including in the esophagus, breast, colon, prostate, and 
pancreas (Emami et al., 2004). Ectopic expression of TFFs in various carcinomas may be a 
useful prognostic marker (Yamachika et al., 2002; Kosriwong et al., 2011). To date, 3 mem-
bers of the TFF family have been annotated in mammals, including TFF1, TFF2, and TFF3. 
Among these, TFF2 may be involved in the restoration of injured mucosa by increasing cel-
lular motility and its rapid induction in the vicinity of injured mucosa (Alison et al., 1995).

TFF2 is the first member identified of the TFF family and contains 2 trefoil motifs 
(Thim et al., 1982). It is expressed and secreted preferentially by gastric mucous neck cells 
(Lefebvre et al., 1993; Jeffrey, 1994) and is upregulated under diverse pathologic conditions 
in the gastrointestinal tract, such as chronic inflammation and gut injury (Wright et al., 1993; 
Hoffmann and Jagla, 2002). Previous studies identified several roles for TFF2. For example, 
TFF2 may inhibit gastric acid secretion (Thim et al., 1982; Konturek et al., 1997) and several 
colon cancer cell lines (Hoosein et al., 1989). Additionally, roles in restitution and stabilization 
of the mucin gel layer have been proposed (Tanaka et al., 1997). MicroRNAs (miRNAs) are 
short, non-coding RNAs (~22 nucleotides) that are typically involved in posttranscriptional 
regression by binding to partially complementary sites in the 3'-untranslated region of their 
mRNA targets (Lee et al., 1993; Wightman et al., 1993; Hua et al., 2009). Increasing evidence 
suggests that target mRNAs can be degraded by miRNAs, which are also important in the 
processes of tumorigenesis and cancer development (Lim et al., 2005; Wang and Wang, 2006). 
However, few studies have characterized the miRNA expression patterns in TFF2 knock-out 
mice. 

Although controlling gene activity by miRNAs has received increasing attention, 
thousands of regulatory transcripts still require analysis, particularly selection of targets, 
mechanisms of complementarity, and cooperativity of miRNAs. Predicting miRNA targets is 
a first-line approach to understanding these complex systems and can facilitate experimental 
validation of such mechanisms of gene control (Shah and Blin, 2010). In this study, we ana-
lyzed the miRNA expression profile of TFF2 knock-out mice and wild-type mice downloaded 
from the Gene Expression Omnibus database. MiRecords and miRTarBase were used to ob-
tain genes correlated with miRNAs. WebGestalt was used to analyze the function enrichment 
and to identify the over-represented gene ontology (GO) categories and pathways of genes in 
the interaction network at a false discovery rate (FDR) of 0.05, and identify enriched path-
ways. These results will enable exploration of the functions of miRNAs involved in regulating 
signal transduction pathways in TFF2 knock-out mice.
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MATERIAL AND METHODS

Microarray data

The miRNA expression profile data on TFF2 knock-out mice with wild type con-
trols were downloaded from Gene Expression Omnibus database, which were deposited 
by Shah et al. (2012) (accession No. GSE25815). The febit Mus musculus miRBase V14 
platform (GPL10849) was used to analyze miRNA expression profiles. A total of 12 
gene chips were available, including 6 gene chips from wild-type mice and 6 from TFF2 
knock-out mice. We downloaded the raw CEL data and the annotation information for 
the platform.

Data preprocessing and identification of differentially expressed miRNAs

The Affy package in R (Gautier et al., 2004; R Development Core Team, 2012) 
was used to convert the CEL data into expression estimates. Missing measurements were 
imputed (Troyanskaya et al., 2001). Next, background correction and normalization were 
conducted by the robust multi-array average algorithm (Irizarry et al., 2003). The linear 
models for microarray data (limma) package (Smyth, 2004) in R was used to identify dif-
ferentially expressed miRNAs between wild-type mice and TFF2 knock-out mice. In a re-
cent study, Jeanmougin et al. (2010) compared 8 tests representative of variance modeling 
strategies and demonstrated that limma presents several practical advantages compared 
with other methods. The Multtest package was used to perform multiple test correction. 
FDR was the expected proportion of false positive findings among the declared signifi-
cant results, which was liberal and more powerful than FWER, a stricter algorithm in 
some situations. FDR < 0.05 and |logFC| > 1 were selected as cut-off criteria and has been 
used in several previous studies (Zhang et al., 2013; Walsh et al., 2014). 

Predicting target genes of differentially expressed miRNAs

Two miRNA databases, miRecords and miRTarBase, were used to predict target 
genes of differentially expressed miRNAs. The miRecords database hosts 2286 records of 
experimentally validated miRNA-target interactions between 548 miRNAs and 1579 target 
genes in 9 animal species (Xiao et al., 2009). The miRTarBase database (Release 3.5) cu-
rates 4876 experimentally verified miRNA-target interactions between 726 miRNAs and 
2789 target genes among 17 species (Hsu et al., 2011). We predicted target genes of dif-
ferentially expressed miRNAs in the 2 databases and extracted the data for the predicted 
target genes.

Construction of interaction network
 
The Search Tool for the Retrieval of Interacting Genes (STRING) database pro-

vides both experimental validated and predicted interaction information (Szklarczyk et 
al., 2011). STRING 9.0 covers more than 1100 completely sequenced organisms. We 
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searched the interactions among target genes of differentially expressed miRNAs using the 
online search tool in STRING and constructed an interaction network. 

Function enrichment analysis

WebGestalt is a web-based integrated data mining system composed of 4 mod-
ules: gene set management, information retrieval, organization/visualization, and statis-
tics. The organization/visualization module organizes and visualizes gene sets in various 
biological contexts, including GO, tissue expression pattern, and protein domain infor-
mation (Zhang et al., 2005; Duncan et al., 2010). In this study, we used WebGestalt to 
identify over-represented GO categories and pathways of genes in the interaction network 
at an FDR of 0.05. 

RESULTS

Identification of differentially expressed miRNAs

The limma package in R was used to identify the differentially expressed miRNAs 
between wild-type mice and TFF2 knock-out mice. After multiple test correction, 14 dif-
ferentially expressed miRNAs were identified at cutoff of FDR < 0.05 and |logFC| > 1. 
Three miRNAs were upregulated, while the remaining 11 miRNAs were downregulated 
(Table 1).

miRNA 	 FDR	   LogFC

mmu-miR-26b*	 0.009765	    2.577116
mmu-miR-142-3p	 0.015303	    2.510031
mmu-miR-125a-5p	 0.008138	    1.313717
mmu-miR-490	 0.009795	 -1.02558
mmu-miR-1899	 0.001542	 -1.07157
mmu-miR-712*	 0.000507	 -1.11783
mmu-miR-715	 0.001851	 -1.16979
mmu-miR-488*	 0.004491	 -1.23071
mmu-miR-1190	 0.000494	 -1.30295
mmu-miR-1895	 0.001279	 -1.50334
mmu-miR-29b*	 0.006877	 -2.00355
mmu-miR-876-5p	 0.013368	 -2.24011
mmu-miR-692	 0.040429	 -2.61369
mmu-miR-463*	 0.031052	 -2.66591

Table 1. Differentially expressed miRNAs (*FDR < 0.05).

Predicting target genes of differentially expressed miRNAs

We retrieved the target genes of the differentially expressed miRNAs from the data-
bases of miRecords and miRTarBase (Table 2). After predicting putative miRNA target genes 
in each database, we extracted target genes shared by the 2 databases. As shown in Table 
2, we obtained the target genes for mmu-miR-142-3p and mmu-miR-29b. The target gene 
for mmu-miR-142-3p was ADCY9 and the target genes of mmu-miR-29b were COL5A3, 
DUSP2, COL1A1, COL4A2, HDAC4, TGFB3, and ACVR2A.
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Construction of interaction network

We retrieved all interactions of target genes of differentially expressed miRNAs using 
the online search tool STRING and constructed an interaction network (Figure 1).

miRNA	 miRecords	 miRTarBase

mmu-miR-26b*	  -	 LEF1
mmu-miR-142-3p	 ADCY9	 ADCY9
mmu-miR-125a-5p	 -	 CBX7, TRIM71
mmu-miR-490	 -	 -
mmu-miR-1899	 -	 -
mmu-miR-712*	 -	 -
mmu-miR-715	 -	 -
mmu-miR-488*	 -	 -
mmu-miR-1190	 -	 -
mmu-miR-1895	 -	 -
mmu-miR-29b*	 COL5A3, DUSP2, COL1A1, COL4	 ACVR2A, BAK1, BBC3, BCL2L11, BMF, CO1A1,	
	 A2, HDAC4, TGFB3, ACVR2A                        COL1A2, COL3A1, COL4A2, COL5A3, CTNNB
		  IP1, DNMT3A, DNMT3B, DUSP2, ELN, FBN1, 	
		  HDAC4, HRK, TGFB3
mmu-miR-876-5p	 -	 -
mmu-miR-692	 -	 -
mmu-miR-463*	 -	 -

Table 2. Target genes of differentially expressed miRNAs.

Figure 1. Interaction network constructed by target genes of differentially expressed miRNAs. Circles of different 
colors stand for different genes. Blue lines link two related genes. 

*The lower expressed miR produced. Gene names in bold mean these genes are presented in both miRecords and 
miRTarBase.
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Function enrichment analysis 

To investigate the functions of the genes in the interaction network, we performed GO 
and KEGG pathway enrichment analysis using WebGestalt. At an FDR of 0.05, 13 GO cat-
egories were enriched, including cAMP metabolic process, cAMP biosynthetic process, bone 
morphogenetic protein signaling pathway and skeletal system development (Table 3). Two 
pathways were significantly enriched, including the transforming growth factor-beta signaling 
pathway and cytokine-cytokine receptor interaction (Table 4).

Table 3. Enriched Gene Oncology terms (FDR < 0.05).

GO-ID	 Term	 Count	 FDR

GO:0046058	 cAMP metabolic process	  11	   4.21E-15
GO:0006171	 cAMP biosynthetic process	   9	   7.33E-12
GO:0030817	 regulation of cAMP biosynthetic process	  11	   2.98E-08
GO:0030814	 regulation of cAMP metabolic process	  11	   4.08E-08
GO:0030509	 BMP signaling pathway	   8	   2.90E-07
GO:0001501	 skeletal system development	   6	   1.38E-06
GO:0007179	 transforming growth factor beta receptor signaling pathway	   9	   1.76E-06
GO:0040007	 growth	 12	   1.30E-04
GO:0048705	 skeletal system morphogenesis	   8	 0.04922
GO:0004114	 3', 5'-cyclic-nucleotide phosphodiesterase activity	 14	   4.21E-19
GO:0005024	 transforming growth factor beta receptor activity	   7	   6.29E-07
GO:0047555	 3', 5'-cyclic-GMP phosphodiesterase activity	   6	   1.34E-05
GO:0008083	 growth factor activity	  11	   1.52E-04

Table 4. Enriched KEGG pathways (FDR < 0.05).

Pathway ID	 Term	 Count	 FDR

mmu04350	 TGF-beta signaling pathway	 20	   1.22E-13
mmu04060	 Cytokine-cytokine receptor interaction	 17	 0.00358

DISCUSSION

miRNAs are post-transcriptional regulators that bind to complementary sequences on 
target mRNAs, typically resulting in translational repression or target degradation and gene 
silencing (Kusenda et al., 2006; Bartel, 2009). In this study, we investigated the miRNA ex-
pression profiles of TFF2 knock-out mice and wild-type mice. A total of 14 differentially 
expressed miRNAs were found to be involved in regulating TFF2 gene activity.

The original study of this dataset by Shah et al. (2012) identified a total of 48 dif-
ferentially expressed miRNAs, including 26 downregulated and 22 upregulated miRNAs. 
The number of differentially expressed miRNAs in our study was lower than in the previ-
ous study. Among the 14 differentially expressed miRNAs, 7 miRNAs were identified in the 
original paper, while the other 7 miRNAs were newly identified as being differently expressed 
(mmu-miR-26b*, mmu-miR-142-3p, mmu-miR-1190, mmu-miR-29b*, mmu-miR-463*, 
mmu-miR-692, and mmu-miR-876-5p). There are 2 explanations for this result. First, the cut-
off criteria for identifying differentially expressed miRNAs were different. In our study, we 
chose an FDR cutoff of < 0.05 and |logFC| > 1, which was stricter than in the original study, 
to achieve more reliable results. Second, different statistical methods for identifying differen-
tially expressed genes leads to different results (Abruzzo et al., 2005). In this study, we used 
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the limma package, which has advantage in studies with small sample sizes compared to other 
methods (Jeanmougin et al., 2010), for analyzing the miRNA expression profile.

Because miRNAs play an important role in posttranscriptional regression by targeting 
mRNAs, we examined the function of differentially expressed miRNAs by identifying puta-
tive targets. However, most target genes of miRNA were computational predictions with only 
limited overlap and lacking experimental confirmations (Jovanovic et al., 2010). To reduce the 
identification of false-positives, we only extracted the target genes existing in the 2 databases. 
One target gene of mmu-miR-142-3p and 7 target genes of mmu-miR-29b were retrieved. An 
interaction network was constructed by mapping these target genes into the STRING database.

Function enrichment analysis showed that most of the dysregulated GO categories 
were associated with cAMP. cAMP is a second messenger that functions in intracellular signal 
transduction in many different organisms. Previous studies have suggested that dysregulation 
of cAMP pathways and aberrant activation of cAMP-controlled genes are linked to the pro-
gression of some cancers (Simpson et al., 1996; Abramovitch et al., 2004; Dumaz et al., 2006). 
Studies have also suggested that TFF2 may be involved in cancer progression (Jung et al., 
2010). Thus, TFF2 may be involved in cancer progression by regulating cAMP metabolism.

CONCLUSIONS

In conclusion, we identified 14 significant dysregulated miRNAs in TFF2 knock-out 
mice. These miRNAs may be involved in regulating signaling transduction pathways and 
growth processes. Although there were some limitations to our study, our results are important 
for understanding the roles of miRNAs in TFF2 knock-out mice.

Because our results were based on microarray data derived from a small sample size, 
further validation is required. Although the selective conditions were stricter than those used 
in the original paper, quantitative polymerase chain reaction results were not available. An 
integrative approach comparing miRNA data with mRNA data should be used to supplement 
the relationship between miRNA and mRNA. 
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