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ABSTRACT. Identification of splice sites plays a key role in the 
annotation of genes. Consequently, improvement of computational 
prediction of splice sites would be very useful. We examined the effect 
of the window size and the number and position of the consensus bases 
with a chi-square test, and then extracted the sequence multi-scale 
component features and the position and adjacent position relationship 
features of consensus sites. Then, we constructed a novel classification 
model using a support vector machine with the previously selected 
features and applied it to the Homo sapiens splice site dataset. This 
method greatly improved cross-validation accuracies for training 
sets with true and spurious splice sites of both equal and different 
proportions. This method was also applied to the NN269 dataset for 
further evaluation and independent testing. The results were superior 
to those obtained with previous methods, and demonstrate the stability 
and superiority of this method for prediction of splice sites.
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INTRODUCTION

Owing to the tremendous increase in genomic sequence data, there is an urgent de-
mand to improve the efficiency of computational algorithms for gene annotation (Sonnenburg 
et al., 2007). The accurate identification of splice sites plays a key role in the annotation of 
genes in eukaryotes (Baten et al., 2007; Rätsch et al., 2007). Most eukaryotic protein-coding 
genes are split genes that are composed of exons and introns. Introns are the non-protein-
coding regions and are removed by RNA splicing in transcription. The border between an exon 
and an intron is termed a splice site. The splice sites consist of the donor site with an almost 
invariant dinucleotide GT at the beginning of the intron and the acceptor site with almost in-
variant dinucleotide AG at the end of the intron, and they are highly conserved consensus re-
gions. Except for those canonical splice sites according to the GT-AG rule, there are very few 
variant ones with dinucleotide GC and AC as consensus regions, and their number accounts 
for approximately 1% in total (Burset et al., 2000). There are a large number of GT and AG di-
nucleotides in eukaryotic genes, but only 0.1% of them are true splice sites (Sonnenburg et al., 
2007). How to identify whether or not a GT/AG dinucleotide is a true splice site is always one 
of the most important and challenging tasks in bioinformatics (Sonnenburg et al., 2007; Baten 
et al., 2008). In this article, we refer to true splice sites as positives and false ones as negatives. 

In the literature, several statistical models have been constructed for splice site pre-
diction. The weight matrix method (WMM) is the earliest and most influential one that 
uses the position-specific compositional biases (Staden, 1984; Tavares et al., 2009). Subse-
quently, the pattern recognition algorithms, represented by a Bayesian network (Cai et al., 
2000), support vector machine (SVM) (Zhang et al., 2006; Baten et al., 2006; Sonnenburg 
et al., 2007; Asa et al., 2008; Zhang et al., 2009), hidden Markov model (Baten et al., 2007, 
2008; Asa et al., 2008; Zhang et al., 2009, 2010), artificial neural network (Reese et al., 
1997; Wang et al., 2009), etc., were successively introduced. A series of special predic-
tion tools were also improved for splice site prediction, such as GeneSplicer (Pertea et al., 
2001), DGSplicer (Chen et al., 2005), NNSplice (Reese et al., 1997), SpliceMachine (Kahn 
et al., 2007), etc. These methods, represented by WMM, construct their splice site statistical 
models mainly based on splicing signals, including sequence feature information of donor 
and acceptor splice sites, branch point motifs, protein coding potential of exons, etc. The 
fusion of splicing signals and RNA secondary structure features (Mareshi et al., 2008) could 
improve the prediction accuracy of acceptor sites but not so for donor sites. Moreover, it is 
computationally expensive to extract the features of RNA secondary structures (Zhang et 
al., 2010). The splicing regulatory elements around splice sites produce an important effect 
on the splicing process, especially for alternative splicing. These elements are generally 
short sequence motifs composed of 6-10 bases, including the enhancer and silencer appear-
ing in the exon and intron regions, respectively. Thus, combining the feature information of 
splicing signals and regulatory elements could effectively improve the level of splice site 
prediction (Sun et al., 2008).

The existing methods of splice site prediction have achieved an acceptable level of 
accuracy. However, there are limitations. 1) It is of prime importance to further increase pre-
diction accuracy, especially since the amount of pseudo-splice sites in s genomic sequence is 
so enormous that even a subtle improvement in prediction accuracy could drastically influ-
ence the absolute large number of pseudo-sites in predicted results. 2) Available algorithms 
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are mainly based on Weblogo (Schneider and Stephens, 1990; Crooks et al., 2004), which 
makes different information content graphs for positives and negatives separately, instead 
of an integrated graph for positives and negatives. Moreover, the application of these graphs 
lacks quantitative criteria, such that even with the same datasets, the number and the position 
of consensus bases determined by different researchers could be different. 3) Considering the 
protein coding potential of exons and the excavation of regulatory element motifs with unsu-
pervised learning, how to select the length of left and right windows with the splice sites as 
the center is a problem that researchers must take into deep consideration. 4) The protein cod-
ing potential of exons is usually evaluated by the statistical frequency of nucleotide triplets. 
However, the regulatory elements are mainly composed of 6 nucleotides. Therefore, there is a 
crucial need to extract the sequence component information in multiple scales. Based on the 
analysis above, we first quantitatively determined the length of the window and the number 
and position of the consensus bases by a chi-square test, then extracted the sequence multi-
scale component (MSC) features, the position (Pos) and adjacent position relationship (APR) 
features of the consensus sites, and finally constructed an SVM classifier. Satisfactory results 
showed that our method achieves a high accuracy in the prediction of splice sites.

MATERIAL AND METHODS

Dataset

To construct a reliable prediction model, we used the publicly available HS3D (Pol-
lastro and Rampone, 2002) splice site dataset (http://www.sci.unisannio.it/docenti/rampone) 
as the model dataset, which was derived from human genes. The dataset contains 2796 con-
firmed true donor splice sites, 271,937 pseudo-donor sites, 2880 confirmed true acceptor sites, 
and 329,374 pseudo-acceptor sites. The redundant information has already been removed. 
Each splice site sequence has the length of 140 bp. For donor splice sites, the GT dinucleo-
tide is conserved in positions 71 and 72 of the sequences, and for acceptor splice sites, AG is 
conserved in positions 69 and 70 of the sequences. We selected all of the true splice sites and 
randomly selected the same number of pseudo-sites (2796 donor sites and 2880 acceptor sites) 
to construct the training set. In this case, the ratio between the number of true splice sites and 
that of pseudo-splice sites is 1:1. We used this 1:1 dataset to extract features for further model-
ing, and constructed another 1:10 (true sites:pseudo-sites) dataset to compare the performance 
of our model with that of Zhang et al. (2010).

To assess the reproducibility and consistency of our method, we performed an ad-
ditional evaluation on the NN269 dataset. As a benchmark dataset, the NN269 dataset is a 
compilation of human splice sites extracted from 269 genes (Reese et al., 1997). It contains 
1324 confirmed true donor splice sites, 4922 pseudo-donor sites, 1324 confirmed true ac-
ceptor sites, and 5553 pseudo-acceptor sites. Each donor site sequence has the length of 15 
bp, and the GT dinucleotide is conserved at positions 8 and 9 of the sequences; each accep-
tor site sequence has the length of 90 bp, and AG is conserved at positions 69 and 70. For 
comparison of performance for donor sites, we selected 208 true samples and 782 pseudo 
samples as the test set and the rest, 1116 true ones and 4140 pseudo-ones, as the training 
set. For acceptor sites, 208 true samples and 881 pseudo-samples were selected as the test 
set and the rest as the training set. The selection referred to the references Sonnenburg et al. 
(2007) and Baten et al. (2006, 2008).
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Feature extraction

Chi-square test

Considering donor sites as an example, for 2796 true donor site sequences (posi-
tives) and 2796 pseudo-donor site sequences (negatives), we calculated the frequency of 
different bases (A, T, G, C) at each position (totally, 138 positions with donor site GT as 
the center, which was defined as the 00 position) in positives/negatives. We then make 
accordingly a 2 x 4-contingency table (Table 1), and a chi-square value can be calculated 
for each position by Equation 1. For degrees of freedom v = 3, the critical value is 7.81 at 
the significance level of 0.05.

(Equation 1)

If the chi-square test is significant for a certain position, it shows that the base dis-
tribution at this position is significantly different between positives and negatives. Making a 
graph with the position as the abscissa and the corresponding chi-square value as the ordinate, 
and then judging whether the chi-square value achieves the significance level of 0.05, we can 
clearly determine the length of the left and right windows and the number and position of 
consensus bases.

Sample		  Base			   Total

	 A	 T	 C	 G

True	 a1	 a2	 a3	 a4	 R1
False	 b1	 b2	 b3	 b4	 R2
Total	 C1	 C2	 C3	 C4	 S

Table 1. Frequency distribution of bases between positives and negatives for a certain position.

Component feature

As the length of the left and right windows is determined, alternative scale compo-
nent features of each window are extracted, respectively. Let k be the component scale. For 
a sequence of length L, the overlap frequency of a string of bases with conjoined R bases 

 is represented by , where each αi is one kind of base (i.e., A/T/G/C). 
The probability of a string of bases  appearing in this sequence is then defined as 
follows:

(Equation 2)
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There are 4k single-scale component (SSC) features to be extracted when the compo-
nent scale k is set as a single scale. When component scale k is set as a multiscale with a value 
of a~b, there are  MSC features. Because the features are separately selected for the left and 
right sequences around splice sites, there are 2 x 4k SSC features and 2 x  MSC features to 
be extracted in total for each sequence. Due to the short length of sequences (less than 70 bp), 
many features are 0 for large k and this is adverse for modeling. Hence, the component scale 
k cannot be enlarged indefinitely.

Pos feature

The number and position of consensus bases is already determined through the afore-
mentioned chi-square test. Considering donor sites as an example, based on 2796 positives 
and 2796 negatives, we calculated the frequency of the 4 bases αi(A,T,C,G) for each conserved 
site, which was defined as  and  (x = 1,…,L; L is the number of conserved sites). The 
frequencies from all conserved sites were made into two 4 x L-probability distribution tables 
for positives and negatives, respectively. A 4 x L-statistical difference table can be obtained by 
subtracting elementwise from these two probability distribution tables, with values denoted as 

. This statistical difference table can reveal the difference between positives 
and negatives and be directly used for coding and evaluation for consensus sites of training 
and test samples as follows. By the coding method for a single base, a consensus base can be 
expressed as a four-dimensional vector according to the order of A, T, G, and C. For instance, 
the third conserved base site in a certain sequence is T and it can be defined as (0, , 0, 0), 
and similarly for other sites. Suppose there are L consensus sites, then 4 x L features can be 
extracted for each sample.

APR feature

The Pos feature contains the information of a single site, while the APR feature 
takes the correlative information between two different sites into account. Consider a donor 
site GT (position 00) as an example, and suppose that the position of the farthest conserved 
site upstream of the donor site is -m, and that downstream is n. Every two consecutive po-
sitions between -m and n, i.e., (-m, -m+1), (-1, 1) … (n-1, n), can then constitute an APR 
feature resulting in m+n-1 APR features. For each pair of positions, the frequencies  
and  (for x = 1,…,n) for positives and negatives of 16 types of dinucleotides (αi = AA, 
AT, AC, AG… GG) are calculated. Two 16 x (m+n-1)-probability distribution tables of 
dinucleotides can then be constructed for positives and negatives, respectively. By subtract-
ing corresponding elements from these two distribution tables with the difference denoted 
as , we finally obtain a statistical difference table for APR features with 
the size of 16 x (m+n-1). This statistical difference table highlights the relevant differences 
between positives and negatives, and can be directly used for coding and evaluation for con-
sensus sites of training and test samples. For instance, if the -i position of a certain sequence 
is base A, the -i+1 position is T, the difference can be expressed as  and the rest are in 
the similar expressions. Based on the statistical difference table for adjacent bases, there are 
m+n-1 APR features to be extracted for each sample.
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SVM

SVM is one of the most important learning machines based on statistical learning 
theory, which contains support vector classifier and support vector regression (Muller et al., 
2001). Based on structural risk minimization instead of empirical risk minimization, SVM can 
solve the problems of small-sample, non-linear, over-fit, dimension disaster, local minimum 
point, etc., and also has the strong generalization ability (Vapnik, 1995). The LIBSVM soft-
ware developed by Chang and Lin (2011) is the concrete realization of SVM. This study ad-
opted support vector classifier (subroutine of LIBSVM) to construct the classifier, where RBF 
kernel function is selected as kernel function and the grid.py of Python is adopted to optimize 
the lattice for parameter optimization.

Model evaluation

Sensitivity (Sn), specificity (Sp) and Matthew’s correlation coefficients (Mcc) as com-
mon measures for determining the performance of a classification model are defined as follows:

(Equation 3)

where TP, FP, TN, and FN represent the number of true positives, false positives, true nega-
tives and false negatives, respectively.

Plotting Sn against 1-Sp gives the receiver operator characteristic (ROC) curve (Faw-
cett, 2003). ROC analysis is an effective and widely used method to assess the performance of 
a classification method (Baten et al., 2006). Plotting the positive predictive value PPV = TP/ 
(FP + TP), i.e., the fraction of correct positive predictions among all positively predicted ex-
amples against Sn, one obtains the precision recall curve (PRC) (Davis and Goadrich, 2006). 
The areas under the ROC and PRC are denoted by AUC and auPRC, respectively. The larger 
the value of AUC and auPRC, the more accurate the model performance is.

RESULTS AND ANALYSIS

Chi-square independence test of sites

Based on the constructed 1:1 dataset (donor sites 2796/2796 and acceptor sites 
2880/2880), the obtained values of the chi-square for independence test for each position of 

(Equation 4)

(Equation 5)
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positives and negatives are shown in Figure 1A and B (where donor sites GT and acceptor sites 
AG are unified as position 00). The chi-square values of all positions exceed the critical value 
χ2

 (0.05, 3) = 7.81, except for that of position -5 of the donor site. This shows that the distributions 
of bases {A, T, G, C} between positives and negatives of all positions except for position -5 
of the donor site are significantly different, and that the length of the left and right windows 
for splice sites should be extrapolated. Due to the limit of the length of sequence, we took the 
upper limit for the original sequence data to extract the component features (Lleft = 70, Lright = 
68 for donor sites and Lleft = 68, Lright = 70 for acceptor sites).

Figure 1. Chi-square test of each position for HS3D dataset for: (A) donors and (B) acceptors.

Despite the fact that the chi-square test is significant for almost all positions at the 
individual significance level 0.05, the specific sites with conservatism should show an ex-
tremely significant difference at the distribution of bases between positives and negatives. 
We calculated the average value (AVG) of the chi-square values of all positions that reached 
the significance level and then took the AVG as the threshold to select the candidate positions 
to extract the Pos and APR features. For donor sites, the chi-square values of positions -39, 
-3~+5, 23 were above AVGdonors = 106.31; for acceptors sites, the chi-square values of posi-
tions -20~+1, 45 were above AVGacceptors = 107.20. However, the positions -39, 23 and 45 are 
isolated ones and relatively further away from the splice sites. We finally chose the contiguous 



©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 11 (3): 3432-3451 (2012)

High-accuracy splice site prediction 3439

The prediction results with features extracted on MSC with k values a~b are generally 
superior to those based on corresponding SSC with k equals a or b, where a and b assume val-
ues from 1 to 5. The best prediction for donor sites using MSC features has an Mcc of 0.870, 
which is achieved with k being 2~4 (there are 336 x 2 features for each sequence); the best 
prediction for acceptor sites achieved an Mcc of 0.792 with k being 1~4 (340 x 2 features for 
each sequence) (Table 2).

Parameter optimization based on the Pos feature

With AUC as a standard, we further searched the optimal window for Pos features 
around the consensus sites, which were preliminarily determined by the analysis of the chi-
square test to be at positions -3~+5 for donor sites and positions -20~+1 for acceptor sites. This 
is done as follows. First, we extracted Pos features and constructed a model with the consensus 
sites as window, and obtained the corresponding prediction results. Second, we selected differ-

positions -3~+5 of donor sites and the positions -20~+1 of acceptor sites as the candidate posi-
tions to extract the Pos and APR features.

Parameter optimization based on SSC and MSC features

The window size of component features has been determined in the chi-square test 
(Lleft = 70, Lright = 68 for donor sites and Lleft = 68, Lright = 70 for acceptor sites). Within the range 
of the windows, we extracted the SSC features and the MSC features for each sequence, and 
then carried out the 10-fold cross-validation. As can be inferred from Table 2, the best predic-
tion based on SSC features for donor sites achieved an Mcc of 0.805 at k = 4, and the best 
prediction for acceptor sites achieved an Mcc of 0.753 at k = 3. In fact, Mcc first improves 
as k increases and then decreased as k gets too large. This illustrates that useless information 
increases as the value of k increases and correspondingly produces unfavorable effects for 
modeling with the SSC features.

k		  Donor			   Acceptor

	 Sn	 Sp	 Mcc	 Sn	 Sp	 Mcc

1	 78.69	 69.53	 0.484	 82.36	 71.39	 0.541
2	 84.51	 80.54	 0.651	 87.01	 83.16	 0.702
3	 88.98	 88.84	 0.778	 88.96	 86.32	 0.753
4	 90.77	 89.70	 0.805	 88.13	 86.22	 0.744
5	 82.90	 81.97	 0.649	 82.40	 85.80	 0.682
1~2	 88.77	 85.23	 0.727	 90.17	 84.06	 0.744
2~3	 93.46	 90.67	 0.842	 91.53	 87.12	 0.787
3~4	 93.78	 92.71	 0.865	 88.13	 87.08	 0.752
4~5	 85.09	 83.91	 0.670	 83.51	 86.01	 0.696
1~3	 93.67	 91.35	 0.850	 91.88	 87.08	 0.790
2~4	 94.31	 92.67	 0.870	 90.04	 87.74	 0.778
3~5	 86.09	 84.51	 0.706	 83.72	 86.53	 0.703
1~4	 94.06	 92.60	 0.868	 91.18	 88.00	 0.792
2~5	 85.51	 85.48	 0.710	 84.13	 86.81	 0.710
1~5	 86.37	 85.27	 0.716	 84.37	 86.91	 0.713

Table 2. Ten-fold cross-validation based on different MSC features for HS3D dataset.

Sn = sensitivity; Sp = specificity; Mcc = Matthew’s correlation coefficients. Numbers in bold mean the best feature 
combinations.
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ent sliding windows around the consensus site with two bases as the unit, and then extracted 
the Pos features and constructed different models to make the prediction. Finally, we selected 
the optimal model by comparing the performance of all the models. The results are shown in 
Figure 2. From Figure 2A, we can see that AUC was maximized when the window for donor 
sites was selected to be at positions of -3~+7, indicating that the positions -3~+7 were the op-
timal window for donor sites; for acceptor sites, the optimal window was at positions -22~+1 
as shown in Figure 2B.

Figure 2. ROC curves of different Pos models for HS3D dataset for: (A) donors and (B) acceptors. Sn = 
sensitivity; Sp = specificity.
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Parameter optimization based on APR features

How to select the optimal parameters based on APR features was similar to that based 
on Pos features. With AUC as a standard, the optimal window sizes for APR features was fur-
ther searched based on the consensus sites (the positions -3~+5 for donor sites and the positions 
-20~+1 for acceptor sites). With the consensus sites and groups of nearby different zones as 
the window, the APR features were extracted and the corresponding models were constructed 
to make prediction. The comparisons of different models are shown in Figure 3. As shown in 
Figure 3A, we can see that AUC was maximized when the window for donor sites was selected 
to be at positions of -3~+5, showing that the positions -3~+5 were the optimal window for APR 
features; for acceptor sites, the optimal window was at positions -22~+3 as shown in Figure 3B.

Figure 3. ROC curves of different APR models for HS3D dataset for: (A) donor and (B) acceptor comparisons of 
models with integrated multiple features for the 1:1 dataset. Sn = sensitivity; Sp = specificity.
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The parameter optimization based on Pos and APR features suggested that the optimal 
windows determined by the precise search were similar to the conserved region determined 
by the chi-square test, which indicated that the chi-square independence test could ensure the 
reliability of the consensus sites.

For the 1:1 dataset, we integrated the aforementioned optimal MSC features (k = 2~4 
for donors and k = 1~4 for acceptors), Pos features (positions -3~+7 for donors, positions 
-22~+1 for acceptors) and APR features (positions -3~+5 for donors, positions -22~+3 for ac-
ceptors) to construct models for predictions of splice sites. The summarized results are shown 
in Table 3. The Mccs of the prediction results from the models with integrated MSC, Pos and 
APR (denoted as MSC+Pos+APR) were 0.922 and 0.884 for donors and acceptors, respec-
tively, which were superior to those of the three models with single feature. Moreover, the Mccs 
of the models with two integrated features randomly selected from MSC, Pos and APR all ex-
ceeded those of the corresponding two models with original single feature, illustrating that the 
integrated features could improve the performance of the models. For donor sites, the optimal 
model was the one with integrated MSC, Pos and APR, and its Mcc was 0.922, but for acceptor 
sites, the optimal model was the one with integrated MSC and Pos, which had an Mcc of 0.887.

Methods		  Donor			   Acceptor

	 Sn	 Sp	 Mcc	 Sn	 Sp	 Mcc

MSC	 94.31	 92.67	 0.870	 91.18	 88.00	 0.792
Pos	 95.60	 90.56	 0.852	 91.53	 87.36	 0.790
APR	 93.02	 89.31	 0.825	 90.94	 86.39	 0.774
MSC+Pos	 96.42	 93.85	 0.903	 95.38	 93.26	 0.887
MSC+APR	 95.92	 93.88	 0.898	 94.41	 92.54	 0.870
Pos+APR	 94.78	 90.67	 0.855	 91.01	 88.06	 0.791
MSC+Pos+APR	 97.21	 94.99	 0.922	 95.17	 93.23	 0.884
SVM+B	 94.31	 90.99	 0.854	 90.90	 88.16	 0.791
MM1-SVM	 93.06	 91.31	 0.844	 90.24	 87.57	 0.779
MDD/WWAM	 93.60	 93.60	 0.840	 93.30	 87.70	 0.791

SVM+B denotes the prediction method using SVM with a Bayes kernel; MM1-SVM is a prediction method that 
used probabilistic parameters and SVM classifier (Zhang et al., 2010), and MDD/WWAM denotes the method 
using maximum dependence decomposition and windowed weight array model (Tavares et al., 2009). MSC = 
multi-scale component; Pos = position; APR = adjacent position relationship; SVM = support vector machine; Sn 
= sensitivity; Sp = specificity; Mcc = Matthew’s correlation coefficients.

Table 3. Comparison of the models under 1:1 HS3D dataset.

Compared to SVM+B and MM1-SVM from Zhang et al. (2010) and MDD/WWAM 
from Tavares et al. (2009), our method gave a better performance. For donor sites, our 
MSC+Pos+APR model gave the best prediction with an Mcc of 0.922 m, which was 0.068 
higher than that of SVM+B and 0.082 higher than that of MDD/WWAM. For acceptor sites, 
our MSC+Pos model gave the best prediction with an Mcc of 0.887, which was 0.096 higher 
than that of SVM+B and MDD/WWAM and 0.106 higher than that of MM1-SVM (Table 3).

Prediction results for 1:10 data set

Considering the fact that there are many more pseudo-splice sites than true ones in 
real genome sequences, we constructed the 1:10 (positives:negatives) dataset to verify the 
practical applicability of the models obtained. Based on the optimal features found in the 
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1:1 dataset, we extracted the following features for the 1:10 dataset and made the following 
prediction: MSC (k = 2~4), Pos (-3~+7), APR (-3~+5), and MSC (k = 1~4), Pos (-22~+1) for 
donors and acceptors, respectively. The comparison of prediction results between the 1:10 
and 1:1 datasets is shown in Figure 4. As shown in Figure 4A, the AUC for donors of the 1:10 
dataset was 99.03% while that of the 1:1 dataset was 98.84%, which indicates that the model 
for donors showed comparable or even better performance in the 1:10 dataset than in the 1:1 
dataset. For the acceptor model, the AUCs were 96.43 and 98.32% for the 1:10 and 1:1 da-
tasets (Figure 4B), respectively, indicating that model accuracy decreased marginally for the 
1:10 dataset but was still at an excellent level. In summary, our novel models constructed with 
the integrated features could give a favorable performance in both the 1:10 and 1:1 datasets. 
This suggests that our method for prediction of splice sites can be widely applied in practice.

Figure 4. Comparison of results between 1:1 and 1:10 HS3D dataset for: (A) donors and (B) acceptors. Sn = 
sensitivity; Sp = specificity.
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Zhang et al. (2010) also adopted the methods LVMM2, LVWMM2, OLVWMM2, 
SVM+B, and MM1-SVM to make predictions for the 1:10 dataset. Among these methods, the 
OLVWMM2 gives an optimal performance for donors with Sn of 94.17% and Sp of 92.91%, and 
the LVMM2 shows the best performance for acceptors with corresponding Sn of 91.22% and Sp 
of 89.70%. In comparison, our MSC+Pos+APR model has Sn of 98.28% and Sp of 92.91% for 
donor sites. The 4.11% increase in Sn for our model indicates that our MSC+Pos+APR model is 
significantly better than the OLVWMM2 model. For acceptor sites, the Sn and Sp of our MSC+Pos 
model were 93.54 and 89.70%, a 2.32% increase for Sn in our model compared to LVMM2.

It can be concluded through the comparisons that the performance of our novel model 
with integrated MSC features and Pos features is significantly superior to that of available 
methods in both the 1:1 dataset and 1:10 dataset.

Evaluation on NN269

Here, we applied our method to the evaluation of dataset NN269 in the following 5 steps 
using the training set. Step 1 = Using the chi-square independence test, the consensus sites were de-
termined to be at positions -3~+4 and -16~+1 for the donor and acceptor sites, respectively (Figure 
S1). Step 2 = Through contrast screening, the optimal MSC features with k = 1~3 and k = 1~2 were 
selected for the donor and acceptor sites, respectively (Figure S2). Step 3 = For extraction of the 
Pos features, the optimal windows were fixed at positions -3~+4 and -16~+3 for the donors and ac-
ceptors, respectively (Figure S3). Step 4 = For extraction of the APR features, the optimal windows 
were fixed at positions -3~+4 and -16~+1 for the donors and acceptors, respectively (Figure S4). 
Step 5 = The model with integrated MSC+Pos+APR gave the best performance for the prediction 
of both donor sites (AUC of 98.58%) and acceptor sites (AUC of 98.40%), as shown in Figure S5.

The optimal models for donors and acceptors were then used for prediction in the test set. 
Because AUC and auPRC were adopted as the evaluation indices in related published studies (Son-
nenburg et al., 2007; Baten et al., 2006, 2008), our results were also translated into those indices for 
convenience of comparison. Table 4 summarizes the predictive accuracy of our models and other 
models in terms of the AUC and auPRC for the NN269 dataset. From Table 4, for donor sites, the 
predictive accuracy AUC and auPRC of our model were as high as 98.93 and 95.11%, higher than 
that of the available optimal model by 0.43 and 2.25%, respectively; for acceptor sites, the AUC and 
auPRC of our model were as high as 98.81 and 95.57%, higher than that of the available optimal 
model by 0.16 and 1.21%, respectively. Hence, our method gave the best predictive performance in 
the dataset NN269.

DISCUSSION AND CONCLUSIONS

Methods		  MC	 LIK	 WD	 WDS	 MC-SVM	 MM1-SVM	 IC-S-SVM	 Ours 

Donor
   AUC		  98.18	 98.04	 98.50	 98.13	 97.64	 97.90	 96.66	 98.93
   auPRC		  92.42	 92.65	 92.86	 92.47	 89.57	 -	 -	 95.11
Acceptor
   AUC		  96.78	 98.19	 98.16	 98.65	 96.74	 97.41	 96.28	 98.81
   auPRC		  88.41	 92.48	 92.53	 94.36	 88.33	 -	 -	 95.57

MC = Markov chain (Durbin et al., 1998); LIK = support vector machine (SVM) using the locality improved 
kernel (Zien et al., 2000); WD = weighted degree kernel (Rätsch et al., 2004); WDS = weighted degree kernel with 
shifts (Rätsch et al., 2005); MC-SVM = Markov chain-SVM (Baten et al., 2006); MM1-SVM = first-order Markov 
model-SVM (Baten et al., 2008); IC-S-SVM = IC Shapiro SVM (Baten et al., 2008); AUC = area under the ROC 
curve; auPCR = area under the precision recall curve.

Table 4. Comparison of different models on NN269 dataset.
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DISCUSSION AND CONCLUSIONS

In this paper, we present a method that first determines the window size and the 
number and position of consensus sites by the chi-square independence test, then inte-
grates the MSC features and the Pos features of consensus sites, and finally applies the 
SVM classifier to predict the splice sites. This method gave a much better performance 
than currently available methods reported in the literature in the results of the 10-fold 
cross-validation for the 1:1 and 1:10 training sets. We also applied this method to the 
NN269 dataset for further evaluation as a test for independence. The results obtained were 
also superior to those of the available methods. This demonstrated the stability and supe-
riority of our method. Satisfactory results showed that our method has a high predictive 
accuracy for splice stes.

For the identification of splice sites and other “signals”, we suggest that the “content” 
features of the left and right sequences in a certain length around the “signal” be extracted 
first. Earlier studies usually adopted the trial-and-error method to optimize the window sizes. 
In this paper, we found that the chi-square independence test integrating the sites of the 
positives and negatives provides a quantitative standard to precisely determine the window 
size. As for the selection of consensus sites, predecessors have mostly made the information 
content graphs for the positives and negatives based on Weblogo, which takes the “signal” 
as center. However, only the unbalanced distribution of bases {A, T, G, C} of a certain site 
in positives is not enough to determine whether this site is a consensus one or not. This is 
because the base distribution of this site may also be similarly unbalanced for negatives, such 
that this site contributes very little in differentiating the positives and negatives. In this study, 
we developed a chi-square independence test that integrates the sites of the positives and 
negatives, through which the determination of consensus sites is obviously more reasonable. 
Furthermore, our method highlights the differences in base distribution for consensus sites 
between positives and negatives through the statistical difference table. The protein coding 
potential of an exon is usually evaluated by the statistical frequency of nucleotide triplets (k 
= 3). For the investigation of an object, multiscale is more reasonable than single scale, in 
theory. The results of this study confirm that MSC features (1~k) are superior to SSC features 
(k). However, the values of many extracted features are 0 as k becomes relatively large due 
to the insufficient length of the sequence. This will lead to a decline in model accuracy. The 
regulatory element motifs generally need to be considered as comprising 6 nucleotides (k = 
6), and if a mismatch is allowed, then k = 5~6. We postulate that k = 4 already satisfies the 
need of the scale for the regulatory element motifs to a greater degree. The results in the lit-
erature also confirm this standpoint.

There is still some possibility for the performance of our methods to be further im-
proved. First, the number of the features generated with MSC features alone is too large. 
Hence, an effective screening method should be implemented hereafter to prune the useless 
or inhibiting number of features to improve the accuracy of the models and reduce the time 
cost for prediction. Second, the splice site prediction conducted in this paper may be vali-
dated by a more completely independent test set and by more datasets derived from other 
species. In particular, we expect that our method could be applied to a whole genome to 
identify the potential unknown splice sites. Finally, this paper does not involve the prediction 
of alternative splice sites, which is a more complicated problem.
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SUPPLEMENTARY MATERIAL

Figure S1. Chi-square test of each position for NN269 dataset for: (A) donors and (B) acceptors.

Figure S2. ROC curves of different MSC models for NN269 dataset for: (A) donors and (B) acceptors. Sn = 
sensitivity; Sp = specificity.
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Figure S3. ROC curves of different Pos models for NN269 dataset for: (A) donors and (B) acceptors. Sn = 
sensitivity; Sp = specificity.
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Figure S4. ROC curves of different APR models for NN269 dataset for: (A) donors and (B) acceptors. Sn = 
sensitivity; Sp = specificity.
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Figure S5. ROC curves of different hybird models for NN269 dataset for: (A) donors and (B) acceptors. For 
abbreviations, see legend to Table 3.


