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ABSTRACT. Farming of Haliotis midae is the most lucrative 
aquaculture venture in South Africa. The genome of this species needs 
to be studied to assist in selective breeding programs aimed at increasing 
overall yield, and molecular markers will be required to attain this 
goal. We identified and characterized 82 polymorphic microsatellite 
loci by using repeat-enriched genomic libraries and high-throughput 
pyrosequencing technology. The observed number of alleles ranged 
from 2 to 21, expected heterozygosity from 0.063 to 0.968, observed 
heterozygosity from 0.000 to 1.000, and polymorphic information 
content from 0.059 to 0.934. Three loci gave significant hits to other 
haliotid genes and/or microsatellite loci; hits to genes were always 
located in the 5ꞌ/3ꞌ-UTR or intron region. Many of these newly designed 
markers would be useful for parentage, population and linkage studies.
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INTRODUCTION

Five abalone species live in the waters of South Africa but only one, Haliotis 
midae, is cultivated and exported. The H. midae industry is the most lucrative aquaculture 
sector in South Africa, with 14 active hatcheries and grow-out facilities (DAFF, 2012). 
Commercial abalone farming of H. midae was initiated in 1990 (Cook and Britz, 1991), 
and 15 years later, a genetics research program was introduced as a collaborative effort 
among academic institutions, industry, and government (Slabbert et al., 2009b). The over-
all aim of the program is the genetic characterization and enhancement of H. midae within 
its natural and commercial settings. To achieve this aim, various molecular genetic markers 
are needed to facilitate different aspects of the program such as genetic diversity studies, 
pedigree reconstructions, linkage mapping, and quantitative trait loci (QTL) discovery.

Microsatellite markers are both extremely popular in modern molecular disci-
plines and widely used in abalone genetic studies such as population structure and genetic 
diversity studies, parentage studies, linkage mapping, and QTL mapping (Baranski et al., 
2006; Gutiérrez-Gonzales et al., 2007; Li et al., 2007; Slabbert et al., 2009a; Shi et al., 
2010). Microsatellite loci have already been isolated for various abalone species, includ-
ing Haliotis rubra (Evans et al., 2000), H. asinina (Selvamani et al., 2000), and H. discus 
hannai (Li and Akihiro, 2007). A number of microsatellite markers have also been pub-
lished as a result of the H. midae genetic research program (Bester et al., 2004; Slabbert 
et al., 2008, 2010).

The development of microsatellite markers is labor intensive and costly. Genomic 
libraries must be constructed and enriched for microsatellite repeats, and clones must be 
screened and then sequenced (Zane et al., 2002). Even more advanced protocols such as 
fast isolation by amplified fragment length polymorphism (AFLP) of sequences contain-
ing repeats (FIASCO; Zane et al., 2002) and the SNX-unilinker method (Hamilton et al., 
1999) are also unsuitable for high-throughput marker development owing to labor-inten-
sive cloning and screening steps. The advent of new-generation sequencing technologies 
such as sequencing by synthesis (Ronaghi et al., 1998) and ligation-mediated sequencing 
(Shendure et al., 2005) could therefore provide alternative methods for generating large 
data sets, minimizing effort, and decreasing costs.

Pyrosequencing is based on the real-time acquisition of DNA synthesis data via 
bioluminescence and is driven by four enzymes: Klenow DNA polymerase I, ATP sulfu-
rylase, luciferase, and apyrase (Ronaghi et al., 1998; Ahmadian et al., 2006). This technology 
has been used in single-nucleotide polymorphism genotyping (Ahmadian et al., 2000) and 
expressed sequence tag sequencing (Galindo et al., 2010). Pyrosequencing has also been 
used to develop microsatellite markers for a number of fungal, insect, bird, reptile, and 
plant species (Abdelkrim et al., 2009; Allentoft et al., 2009; Santana et al., 2009; Castoe 
et al., 2010; Blanca et al., 2011). These studies have shown that pyrosequencing is an ef-
fective platform for the automation of certain analytical steps within a standard marker 
development protocol, making it a more time-efficient strategy.

In this study, pyrosequencing was used to generate data from a repeat-enriched ge-
nomic library. Primers for microsatellite loci were designed and further characterized. The 
data generated using pyrosequencing were also screened against National Center for Biotech-
nology Information (NCBI) databases to identify possible orthologs and gene associations.
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MATERIAL AND METHODS

Sample collection and DNA extractions

Sixteen H. midae samples were collected from wild fish at Saldanha Bay (west coast 
of South Africa). Genomic DNA was isolated from muscle tissue using a cetyltrimethylam-
monium bromide protocol (Saghai-Maroof et al., 1984).

Genomic library construction

The FIASCO method (Zane et al., 2002) was used to construct a repeat-enriched ge-
nomic library. A total of 250 ng H. midae DNA was digested with MseI (New England Bio-
labs) and ligated to MseI adaptors. This sample was then selectively amplified and separately 
enriched with biotinylated (AC)12, (GATC)6, (CAA)8, and (GTGC)6 probes and recovered us-
ing streptavidin magnetic particles. These enriched particles were again selectively amplified 
using an MseI-specific primer mix.

Pyrosequencing and primer design

A final amount (5 µg) of polymerase chain reaction (PCR) product was sequenced 
using the Roche 454 GS-FLX system at Inqaba Biotech (Pretoria, South Africa). Samples 
were prepared and analyzed according to the manufacturer protocol. Single reads were 
obtained and contiguous sequences were constructed using the Newbler version 1.1.03.24 
software. All the contiguous sequences were trimmed of any adaptor sequences using the 
Find and Replace function of Microsoft Word. These sequences were then analyzed for 
length, GC content, and repeat motifs using the online software program BatchPrimer3 
version 1 (You et al., 2008). The same software package was used to design primers 
for repeats containing contiguous sequences for which adequate flanking regions were 
available. To avoid primer redundancy, all contiguous sequences for which primers were 
designed were screened against a local Basic Local Alignment Search Tool (BLAST) 
database (created using BioEdit version 5.0.9; Hall, 1999), which contained all the micro-
satellite sequences generated thus far for H. midae.

Genotyping

All PCR applications were conducted in a Geneamp 2700 thermo cycler (Ap-
plied Biosystems; Johannesburg, South Africa) in 10-µL reaction volumes containing 
20 ng DNA, 0.2 µM of each primer, 200 µM deoxyribonucleotide triphosphates, 0.1 U 
2G Fast Taq polymerase (KAPA Biosystems; Cape Town, South Africa), 1X buffer B 
(KAPA Biosystems), and 2 mM MgCl2. A fast touchdown PCR program was used: an 
initial activation and denaturing step at 95°C for 2 min, followed by 10 cycles of 1 s at 
94°C and 5 s at 65°C and 30 cycles of 1 s at 94°C and 5 s at 55°C. A final elongation 
step was performed at 72°C for 10 s. PCR products were separated on a 3730xl DNA 
Analyzer (Applied Biosystems) and scored using GeneMapper version 4 (Applied Bio-
systems).
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Statistical analyses and bioinformatics

Sixteen Saldanha Bay samples were used to characterize the microsatellite loci. 
The number of alleles, observed and expected heterozygosities, and polymorphic infor-
mation content (PIC) were calculated using CERVUS version 3.0.3 (Kalinowski et al., 
2007). Deviations from Hardy-Weinberg equilibrium (Weir and Cockerham, 1984) were 
calculated using Genepop version 4 (Rousset, 2008). Sequential Bonferroni’s correction 
was performed for multiple tests.

The bioinformatics protocol described by Farber and Medrano (2003) was used to 
search for possible homologous loci in related species. In brief, repeat motifs were masked 
using RepeatMasker (www.repeatmasker.org/cgi-bin/WEBRepeatMasker) to omit significant 
hits owing to repeat motif similarities. Masked sequences were then subjected to BLASTN 
and BLASTX in the nr-nucleotide and nr-protein databases of NCBI (http://blast.ncbi.nlm.nih.
gov/Blast.cgi). Multiple alignments of query and subject sequences were used to determine 
the position of the microsatellite repeat within genes.

RESULTS

Pyrosequencing and primer design

A total of 11,271 single-sequence reads were generated covering 1.82 Mb and as-
sembled into 1067 contiguous sequences. One hundred and forty-one dinucleotide, 22 tri-
nucleotide, 264 tetranucleotide, 20 pentanucleotide, and 15 hexanucleotide repeats were 
detected within 297 contiguous sequences. Primer pairs were successfully designed for 
185 repeat-containing contiguous sequences using BatchPrimer3. Of these primer pairs, 
27 were discarded because some of the individual primers were situated within repeat 
tracts, which may have caused difficulties in downstream applications such as PCR am-
plification and size calling of alleles. Another three sequences were discarded owing to 
similarity to previously isolated loci for which primers already existed. A total of 155 
primer pairs were chosen for further analysis.

Statistical analyses and bioinformatics

The screening of the wild population revealed that 82 of 155 loci were polymorphic 
(Table 1). Ten of these loci had more than three alleles, indicating a duplication event within 
the same locus or possibly between loci. The number of observed alleles for the nonduplicated 
alleles ranged from 2 to 21, expected heterozygosity ranged from 0.063 to 0.968, observed 
heterozygosity ranged from 0.000 to 1.000, and PIC ranged from 0.059 to 0.934. Seventeen 
of the 82 microsatellite loci did not conform to Hardy-Weinberg equilibrium after sequential 
Bonferroni’s correction (P < 0.05).

Three loci gave statistically significant hits to sequences in the NCBI databases; how-
ever, all three had multiple significant hits to other haliotid genes or microsatellite loci. Hits 
to genes were always located in the 5ꞌ/3ꞌ-untranslated or intron regions (Table 2). Only one 
microsatellite locus, HmidPS1.588C, was strictly conserved between H. midae and H. d. han-
nai, taking into consideration the reverse complement.
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DISCUSSION

A total of 82 microsatellite markers were developed for H. midae using the FIASCO 
method and the 454 pyrosequencing. The usefulness of these newly designed microsatellite 
markers for future applications such as population structure analysis, parentage assignments, 
and linkage mapping was assessed by calculating various parameters. Deviations from Hardy-
Weinberg equilibrium (see Table 1) were mostly the result of heterozygote deficiency caused 
by the presence of null alleles (O’Connell and Wright, 1997), allele dropout, or scoring errors 
(Jones and Ardren, 2003). Two observations (HmidPS1.469R and HmidPS1.1007C) were ex-
plained by heterozygote excess. Although loci such as HmidPS1.469R and HmidPS1.1007C 
could be interesting candidates for studying selection processes in the life history of H. midae, 
they should be used with caution. The high PIC values obtained for many of the loci make 
them good candidates for parentage assignments and linkage mapping owing to a strong likeli-
hood of being informative in both parent and offspring.

Amplification of more than the expected two alleles has previously been observed 
in H. midae (Slabbert et al., 2010) and H. rubra (Evans et al., 2001). The exact mechanisms 
underlying this occurrence are still unclear but could be explained by genome duplication, 
polyploidy, aneuploidy, or conserved microsatellite repeat tracts and flanking regions found 
in mobile elements (Hubert et al., 2000). A recent study by Rhode and Roodt-Wilding (2011) 
found that 21% of all known H. midae microsatellite loci are associated with characterized 
transposable elements, which play a role in locus duplication. This high association may there-
fore be the most likely explanation for duplications in abalone microsatellites.

Three loci were found to have orthologs in other haliotids. The lack of strict repeat 
motif conservation is expected taking into account the life cycle hypothesis of microsatellite 
evolution (Ellegren, 2004). These loci also had significant hits to haliotid genes. BLAST align-
ment analysis showed that the repeat motif was located in the untranslated region or introns. 
Furthermore, because individual loci are present across haliotid species and not necessarily 
in the same genes, these loci might form parts of gene regulatory elements (Li et al., 2004). 
Two of these markers (HmidPS1.588C and HmidPS1.1007C) deviated from Hardy-Weinberg 

Locus name                             Microsatellite locus hits                                          Gene hits

 Locus name (Accession No.) E-value Identities-value Gene name (Accession No.) E-value Identities-value

HmidPS1.374T H. d. hannai microsatellite 5e-09 90% H. discus lysin 2e-08 87%
 (AAAC)n (GU995824)   (FJ940391)
    H. rufescens lysin 2e-08 87%
    (AF076822)
    H. corrugata lysin 3e-07 88%
    (FJ940473.1)
HmidPS1.588C H. d. hannai microsatellite 8e-09 78% H. rubra ATPase alpha-subunit 2e-07 78%
 (GAGT)n (AB177913)   (AY043205)
 H. kamtschatkana microsatellite 3e-05 79% H. d. discus peroxiredoxin 3e-05 80%
 (GT)n (AY013579)   (EF103356)
 H. sieboldii microsatellite 1e-10 79%
 (CT)n (JF693957)
HmidPS1.1007C H. rubra microsatellite 7e-08 95% H. tuberculata hemocyanin 7e-05 90%
 (CA)n (AF194955)   (AJ252741)
 H. d. hannai microsatellite 7e-8 95%
 (CT)n (AB177931)

Table 2. A summary of loci with significant BLAST hits.
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expectations, which may indicate functional constraints and thus selective pressures. These 
loci are prime candidates for synteny mapping, QTL, and functional analysis.

The data generated using FIASCO and pyrosequencing 454 were accurate and ade-
quate for the development and characterization of 82 polymorphic microsatellite markers. Py-
rosequencing provides sequence information on all available DNA fragments present within 
an enriched library, in contrast to traditional cloning in which technical, time, and budget con-
straints cause the loss of significant information. The characterization of the newly designed 
markers showed that many of them would be useful for parentage and population studies. The 
additional markers will also contribute to the construction of a detailed linkage map.
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