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ABSTRACT. Gene regulatory networks, or ssmply gene networks
(GNs), have shown to be a promising approach that the bioinformatics
community has been devel oping for studying regul atory mechanismsin
biological systems. GNs are built from the genome-wide high-through-
put gene expression data that are often available from DNA microarray
experiments. Conceptual ly, GNsare (un)directed graphs, where the nodes
correspond to the genes and a link between a pair of genes denotes a
regulatory interaction that occurs at transcriptional level. In the present
study, we had two objectives: 1) to develop aframework for GN recon-
struction based on a Bayesian network model that captures direct inter-
actions between genesthrough nonparametric regression with B-splines,
and 2) to demonstrate the potential of GNsin the analysis of expression
dataof areal hiological system, the yeast pheromone response pathway.
Our framework also included a number of search schemesto learn the
network. We present an intuitive notion of GN theory as well as the
detailed mathematical foundations of the model. A comprehensive anal-
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ysis of the consistency of the model when tested with biological data
was done through the analysis of the GNs inferred for the yeast phero-
mone pathway. Our results agree fairly well with what was expected
based on the literature, and we developed some hypotheses about this
system. Using thisanalysis, weintended to provide aguide on how GNs
can be effectively used to study transcriptional regulation. We also dis-
cussed the limitations of GNsand the future direction of network analy-
sisfor genomic data. The software is available upon request.

Key words. Gene networks, Bayesian networks,
Transcriptional regul ation, Pheromone response pathway,
Saccharomyces cerevisiae

INTRODUCTION

Gene regulatory networks, or simply gene networks (GNs), have shown to be a prom-
ising approach that the bioinformatics community has been devel oping for studying regulatory
mechanismsin biological systems. These GNsare built from the genome-wide high-throughput
gene expression data (Figure 1) that are often available from DNA microarray experiments
(Friedman, 2004). Transcriptome data have become increasingly important because they pro-
vide an appropriate source for studies of the systemic behavior of complex biological systems,
and the GNs are one of the computational tools that have been employed to this end.

DNA microarray Expression matrix Gene networks

Figure 1. General steps in recovering gene networks (GNs) from DNA microarray data. A. Image processing and
normalization of data. B. Inference of the network using expression data.

A DNA microarray experiment, which measures the levels of genes being expressed,
can be both designed to generate time series expression data (sampling at different times under
the same conditions) or it can be designed in astatic manner, in which one takes snapshotsfrom
cells under a variety of physiological conditions (i.e., from different tissues). The microarray
generates the mRNA levels of transcripts, and these data can be used to reveal the hidden
“program” that controls gene expression in that biological system.

The expression program of acell determineswhich group of genesisgoing to shift from
the basal to active transcription, and which genesare going to beinhibited. Several physical and

Genetics and Molecular Research 5 (1): 254-268 (2006) www.funpecrp.com.br



D.F. Veigaetal. 256

mechanical systemsare modeled as stochastic processes susceptible to noisy measures (Roweis
and Ghahramani, 1999). We can al so borrow this approach to analyze biol ogical systems, aswe
consider that the system that we want to model isaprogram that controls gene expression at the
molecular level. In this system, we have a number of regulatory mechanisms, represented by
the transcriptional control strategies of the cell, such asthe synthesis of specialized proteins as
transcription factors. We al so know that this expression program works differently according to
external stimuli and to intracellular conditions, such as the concentration of some metabolites.
Furthermore, the output of thissystemisthe mRNA levels of the genesthat areinvolved. These
measures are, in turn, highly noisy, due to experimental and computational factors. In this sce-
nario, the question that arises is “What is the structure of the system that has generated this
expression data?’ or equivaently, “How do genes interact among themselves to generate this
output?’ The GNs aim to recover these interactions and therefore, the underlying system that
worksat thetranscriptional level, through so-called probabilistic graphical models.
Conceptually, GNsare (un)directed graphs, in which the nodes correspond to the genes
and alink between a pair of genes denotes a regulatory interaction between them (Figure 2).
Since we are ng MRNA profiles, alink between two genes represents the relationship
that occursat thetranscriptional level, i.e., atranscription factor that isactivating itstarget gene.
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Figure 2. Graphical model representations of gene networks. In A, the gene network is an acyclic directed graph
(Friedman, 2004), Bayesian network, which denotes the direction of regulation and B an undirected graph (Schéfer and
Strimmer, 2005), where an edge only means that there is some kind of association between the linked genes.

For the purpose of inference of GN from data, graphical model s provide the mathemati-
cal theory to determine the geneinteractions. Since the pioneer work of Friedman et al. (2000),
several models have been proposed (for a review, see Xia et al. (2004), van Someren et al.
(2002), and de Jong (2002)). Bayesian networks (BN) are of specia interest for two main
reasons: 1) the ability to handle noisy data, such as microarray outputs, and 2) prior knowledge
can easily beincorporated into the model.

We developed aframework for GN reconstruction, based on aBN model that captures
direct interactions between genesthrough nonparametric regression and that has multiple search
schemes for learning the network. The base functions used for regression are B-splines. This
approach of function approximation by nonparametric regression leadsto flexibility of the mo-
del, since it does not assume any fixed regulation function. The model has a number of search
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schemes that are based on two search agorithms, known as random hill-climbing and greedy
hill-climbing. Thisframework has many optionsfor initializing the start graph, including empty,
random, score-driven, and partial correlationinitialization.

METHODS

Before the mathematical enunciation of themodel, it isimportant to discuss some prin-
ciples behind GN inference. The main objective of an algorithm to infer GNsis to find the
correct set of regulatorsfor the genesin the net. Within the BN terminology, thismeansfinding
the correct parents for each node. As an example, we assume that expression levels of a
regulated gene a are dictated by its parents genes. If gene ais mainly regulated by genesb and
¢, onauniverse of n genes, the goal isto identify, among all possible combinations of n-1 other
genes, that theideal regulators (parents) for a are b and c. We also should find, from expression
data, that the mRNA levelsof a havetheir best approximation when wetake them asafunction
of the parents' expression, that is, E(a) = F(E(b), E(c)). Hence, we need to make use of a
mathematical tool to perform this approximation of gene expression given its parents.

The model uses nonparametric regression with B-splines to capture the relationships
between genes, as introduced by Imoto et al. (2002) and further developed by Bastos and
Guimaraes (2005). While some BN modelsfor GNsuse afixed regulationlaw (Nachman et al .,
2004), our approach isflexible on thisissue, not restricting theinteractionsto behavior to afixed
function.

Bayesian network model for gene networks

Let X=(X,, X,, ..., X )" be arandom n-dimensional vector containing the genesto be
analyzed, and assumethat G isadirected graph. Under BN theory, genes are random variables,
anditispossibleto decomposetheir joint probability into aproduct of conditional probabilities:

POX, X,0 ..., %) = PX, [ P) POGIP) x ... x P(X |P)  (Equation1)

whereP, = (P, PO, ..., PO )T isadqi-dimensional vector of parent variables of X in G.

Suppose that s observations x , X,, . . . , X of random vector X are performed, and the
observations of P, aredenoted p,, p,;, . . -, Py, Wherep, = (p,", ..., p,“)" isaqi-dimensional
observation vector of parent genes. For example, assume X _asan nx smatrix, given that each
of itscomponentsx (i =1, ..., n)isavector of length s.

Therefore, X (= (X, ..., X)T= (Xgp -+ Xg) = (X)iey nijero X = (Koo X0 X
= (X, , ..., %), and xT isthe transposed vector of x. If X,, for instance, has a parent vector
P, = (X,,X)T, we can obtain p,, = (X,,, X-)" ..., Py = (X X"

Equation 1 still holdsif we replace the P probabilitiesby density functions:

X, 0 %, 0 -0 %) = 06 [P®) 1,06, [P@) x o £ (x [P®). (Equation2)

1)
where x. is aparticular value taken by X.. We then need to construct the conditional densities
f (X, |pj('>), wherei=1,...,nandj=1,...,s. Following Tamadaet al. (2003) and Imoto et
al. (2002), we used nonparametric regression models for capturing the relations between the
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expression of genei on samplej, x; and the expression levels of parentsonj, p, = (p,", . . .,
p;")" through the equation:

(p(’))-i-m (p(’))-i- tm (pﬁ’q)l) e, i=1.,mj=1,. s, (Equation3)

wherem(k=1,.. ., qi) are smoothing functions from %R (the set of real numbers) to R, and g,
follows a normal distribution with mean 0 and variance ¢%. For each function m, we assume
that:

m(py) = Zv(’)b“)(pﬁ,?) J=LlLsik=1,..,q, (Equation 4)

where {b,?, b,®, ..., b, “} is a preconceived set of “basis functions’ (such as Fourier
series, polynoml aI bases, B-splines, and others), the coefficientsy, @, . . ., y,,, © are unknown
parameters, and M, is the number of basis functions.

In our case, the basis functions are degree 3 B-splines; the coefficientsy, @, ..., v,,,”
are estimated from data, and M, = 20. Thereisaspecial algorithm to learn the parametersfrom
data (Eilersand Marx, 1996). We do not detail how B-splineswork as function approximation,
in nonparametric regression; it isenough to know that they will “construct” aregulation function
for each gene with the parent expression values. As we know the parents values P, = (p o,

Py )T, the B-splines generate an estimated expression for genei, X,

It remainsto evaluate the quality of the B-spline approxi matlon for agiven set of par-
ents P.. Thisis done with the probability density function customized for a nonparametric re-
gression model, using B-splines (Imoto and Konishi, 2000), when the ith gene has gi parents:

) {xy' _fy-}z .
fl.(xy P ,yl,cl)— =CeXp|——— 5 — (Equation 5)
27o; 20;
' —Zk . k(p(l)
Thisresult allows usto define the BN:
Fe|0) =]/, p0:0). =1, .5, (Equation 6)
i=1
where 6,=(6,", ..., 6n" )" is a parameter vector in graph G, and 6, is a parameter vector in

the model of f, that is, 6, = (v, 6?)" or 6, = (1, c.)".
Multiple search schemes and graph selection criterion
Tolearnthe GN from data, we need asearch algorithm that startswith aninitial solution

and traverses, using a criterion, across the space of possible networks to find the optimal net-
work. To guide the search, we use scoring functions, also called evaluation criteria, which
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assign scores to each network according to its adherence to the observed data. Most of the
evaluation criteriaused to analyze a network use acommon idea, the maximization (or minimi-
zation) of the posterior probability,

p(G)p(X|G)

GlX) =
P(G[X) 0

. (Equation 7)

where p(G) isthe prior probability of thegraph G, and p(X | G) isthe probability of the observa-
tions given the graph. Theterm p(X) (prior probability of the data) is constant and not related to
p(G), and therefore will not be taken into account in the model’s eval uation. We use the Baye-
sian Information Criterion score, which has a term to measure the accuracy of the model in
predicting data and another term to penalize the complexity of the model. For that reason, the
more complex the graph structure, the worse its evaluation.

The space of solutions determined by al the acyclic directed graphs (a BN) grows
exponentially with the number of nodes (Chickering, 1996). Under thisscenario, we haveimple-
mented two heuristic search algorithms to seek for the optimal net, random hill-climbing and
greedy hill-climbing (Ott et & ., 2004). Briefly, both random hill-climbing and greedy hill-climbing
makelocal changesin the network, through the following operations: 1) add aparent, 2) remove
a parent, 3) reverse link direction, and 4) nothing. The difference between them is that the
random approach chooses the modification at random, and only accepts it if it improves the
overall score, whilethe greedy one eval uatesthe best possible move, applying the operatorsfor
the current network. Our implementation uses the greedy hill-climbing with many random re-
starts in order to better explore the search space.

Theframework also hasavariety of initialization optionsthat define the starting graph
for the learning procedure. We can begin the search with an empty graph, a random graph, a
score-driven generated graph, and a graph that starts with interactions found by the partial
correlation analysis (de LaFuente et al., 2004).

Next we present the results on applying the model to artificial and real biological ex-
pression data.

RESULTSAND DISCUSSION
Comparing search schemes

To compare the multiple search schemes available in the framework, we have used an
artificial GN with 10 genes (Imoto et a ., 2002). The artificial GN was sampled 100 times, each
one being perturbed by a Gaussian noise (to mimic microarray experiments). This network, as
well as the regulation functions that associate the genes, can be seen in Figure 3.

For random hill-climbing, wetested five different configurationsfor theinitial network:

A. Score-driven: the parents of each gene are defined by the Bayesian information
criterion score;

B. Random: the number of parentsis sampled from auniform distribution and they are
chosen randomly among the genes;
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Figure 3. Artificial gene network used for simulation studies, along with hypothetical regulation functions. & coefficients
represent the Gaussian noise that affects the expression of each gene.

C. Partial correlation: weinput theinitial graph with the linksidentified by the partial
correlation analysis;

D. Partid correlation + score-driven: thelinksfrom the correlation analysis plusascore-
driveninitiaization;

E. Partia correlation + random: the links from the correlation analysis, followed by a
randominitialization.

We performed 100 executions with each scheme and evaluated the distribution of the
score for the learned networks (Figure 4). The lower the score, the better the learned GN. We
see from this simulation that configurations A, B, and D produced solutions with scoresin the
interval [3.5x 10°, 3.55 x 10%], which suggeststhat they had anal ogous performances. Configu-
ration E generated solutionswithin two intervals. The best scores were achieved by scheme C,
in which we only used the links found by the correlation analysis to start the graph, producing
scores ranging from 3.31 x 10° to 3.36 x 10°.

The same procedure was used with the greedy hill-climbing. After all ssimulations, we
applied at-test to decide which configuration was the best. The t-test points to scheme C, that
israndom hill-climbing and partia correlationinitialization, asthe best configuration to begin the
search with.

Pheromone response pathway

Asan application using areal biological system, we have applied the BN model to the
Saccharomyces cerevisiae pheromone response pathway. This signaling pathway is respon-
sible for aseries of complex physiological changes in preparation for mating in haploid yeast
cells, including changesin the expression of about 200 genes, arrest in the G1 phase of the cell
cycle and membrane fusion of mating partners (Bardwell, 2005).

Thetransmission of the signal starts when the pheromone peptide isrecognized by cell
surface receptors, leading to a signaling cascade that ultimately activates genes needed for
mating. STE2 acts as the specific MAT a. cell pheromone receptor, while STE3 is the receptor
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Figure 4. Histograms of the final scores for 100 executions of the framework, under different initialization schemes (see
text for details) and using the random hill-climbing search. BIC = Bayesian information criterion.

for the MATa cells (Lewin, 2000). After pheromone recognition, the G-protein coupled to the
pheromone receptor (atrimeric complex formed by GPA 1, STE4 and STE18) recruitsits effec-
tors in order to propagate the signal to an MAPK signaling cascade that finally activates the
STE12 transcription factor, the major player that will command the DNA transcription. The G-
protein effectors are the STES/STE11 and FARY/CDC24 complexes as well as the STE20
protein kinase (Bardwell, 2005). A schematic view of the mating pathway isshownin Figure5.

We generated GNs for two microarray datasets. As the first dataset, we used a subset
of 12 genesfrom the cell cycle expression datagenerated by Spellman et al. (1998). These data
have 18 samples (time series experiment). Ten of the genes, STE2 or STE3, STE18, STE20,
STE5, STE11, STE7, FUS3, GPA1, FARL, and STE12, act directly on the mating pathway,
while AGA1 and FUSL are required for cell fusion (Bardwell, 2005). Figure 6 shows the GNs
(GN-1 and GN-2) inferred from this dataset, using STE2 and STES3, respectively. The nodes
were colored depending on the known function of the gene (see Table 1 for the mapping). For
thisreason, it is desirable that genes with related functions occur near each other in the graph.

For each experiment, we ran 600 executions (i.e., 600 | earned networks) and the output
network was defined by a “voting criterion”. In conformity with this criterion, we chose a
threshold, and only thelinksthat appeared above thisthreshold across all executions composed
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Figure 5. Pheromone response signaling pathway. Steps in the transmission of the initial signal (pheromone peptide
recognition) from the membrane to the nucleus (STKE, 2005).

GN-1 GN-2

Figure 6. Gene networks (GN) inferred from the Spellman et al. (1998) yeast dataset. Experiment 1 (GN-1): 12 genes
involved with the pheromone response pathway, including STE2. Experiment 2 (GN-2): 12 genes, including STE3. In
both networks, STE12 is the gene that controls regulation at the transcriptional level in the pheromone response
pathway, which is fairly consistent with biological knowledge. See text for description of genes and analysis of the
recovered networks. The nodes are colored according to function (Table 1).
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Table 1. Color and function of genes set that appear in the networks (adapted from Hartemink et al., 2002).

Gene Color Function of corresponding protein

STE2 magenta transmembrane receptor peptide (present only in MATa strains)
STE3 red transmembrane receptor peptide (present only in MAT o, strains)
GPA1l green component of the heterotrimeric G-protein (Goy)

STE18 green component of the heterotrimeric G-protein (GP)

FUS3 blue mitogen-activated protein kinase (MAPK)

STE7 yellow MAPK kinase (MAPKK)
STE11 yellow MAPKK kinase (MAPKKK)
STES yellow scaffolding peptide holding together Fus3, Ste7, and Stell in alarge complex

STE12 blue transcriptional activator
STE20 orange p21-activated protein kinase (PAK)
FAR1 blue substrate of Fus3 that leads to G1 arrest; known to bind to STE4 as part received of

complex of proteins necessary for establishing cell polarity required for shmoo formation
after mating signal hasbeenreceived

FUS1 blue required for cell fusion during mating

AGA1l blue anchor subunit of a-agglutinin complex; mediates attachment of Aga2 to cell surface

the resultant network. In our experiments, we used a threshold value of 55% of thetrials. The
program run took about 20 hin a Pentium 4 with 2.4 GHz and 1 GB RAM.

From Figure 6, we can observe that in both networks (GN-1 and GN-2), STE12 hasan
important position, becauseit hasthe highest number of children. Thus, the recovered networks
suggest that this gene hasan important rolein transcriptional regulation. Indeed, asindicated by
thebiological literature, STE12 isthe most important transcription factor that is activated by the
pheromone response pathway (Zeitlinger et al., 2003), and it influences the transcription of a
number of other genes.

For GN-1, the network successfully predicts known regulatory interactions between
STE12 and genes STE2, FUS3 and FARL, which are positively acting components of the path-
way (Bardwell, 2005). It did not capture known interactionswith AGA1, ageneinvolved in cell
fusion (White and Rose, 2001), nor were interactions found with GPA 1, anegative regul ator of
the pathway (Bardwell, 2005). However, GN-1 reports three interesting relations of STE12
with STE20, STE5 and STE11. STE5 is an adaptor protein that binds to and activates STE11,
the upstream kinase on the MAPK cascade. STE20 is ancther protein in the neighborhood that
isanother activator for STE11. GN-1 indicates somekind of regulation (activation or inhibition)
of these genes by STE12, which we did not find evidenced in a specialized database (SCPD,
2005). We hypothesize that STE12 isin someway upregulating these genes, because MAPK
targetswill act towards maintaining the transcription of STE12 target genes (e.g., inhibition of
Digl and Dig2, which are inhibitors of STE12, thus benefiting the maintainability of mating
genestranscription). Thediagramin Figure 7 provides an illustration of thisscenario. Thelinks
around STE12, inferred by GN-1, are highlighted (red) and thelinksin black depict interactions
at proteinlevel. Thisdiagram also allows oneto note that GNs encode protein-DNA interactions
besides only protein-protein relationships, as the case of the signaling pathway in Figure 5.

GN-1 aso indicates that FARL expression is controlled by STE12 and GPA 1. One of
thefunctionsof FAR1 isto promote G1 cell-cycle arrest. Given thefact that GPA1lisanegative
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Figure 7. Wiring diagram of the yeast pheromone response pathway (adapted from Bardwell, 2005), along with some
regulatory links for STE12, found by gene network-1. A black line indicates a regulatory relationship (activation or
inhibition) at the protein level (binding, phosphorylation, and so on). Red-labeled lines identify some of the genes
regulated by STE12 (protein-DNA interactions).

regulator of the pheromone response (see above), thislink (GPAL, FAR1) is afeasible hypo-
thesis, and it remains to be determined by which mechanism GPA 1 down-regulates FARL.

STE18 is the gene with the second-most regulatory connections in GN-1 (Figure 6).
STE18 expresses one of the subunits of the G-protein complex, bound to the pheromone recep-
tor. GN-1 shows that mRNA expression of STE18 affects the regulation of STE7 and STE11
(both protein kinases), aswell as STE12, the main transcription factor.

GN-2, which contains STE3 instead of STE2, has also revealed STE12 as the most
important genein the transcriptional regulation of the pathway. GN-2 has found the same inter-
actions around STE12 in the first experiment, with STE3 (in place of STE2), FUS3, FAR1,
STE20, STES5 (inverted), and STE11, previousjustified. It has also found two interactions evi-
dencedintheliterature (Bardwell, 2005) not found by GN-1: adirect interaction (STE12, GPA1)
and a second-level interaction (STE12, AGA1L).

The second dataset (Hartemink et al., 2002) had 12 genes that are directly or closely
involved with the mating pathway, and it was used to infer athird network GN-3. The expres-
sion data consisted of 20 observations of the two types of haploid yeast cells (o. and &), under
several conditions, including exposureto different nutritive media, and exposureto varioustypes
of stress, such as heat, oxidative species, excessive acidity, and excessive alkalinity.

GN-3ispresented in Figure 8. STE12 again isthe most connected gene, but here some
important regulatory connections, such as (STE12, FUS1) and (STE12, STE2) were not discov-
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ered, even though several otherswereidentified, including (STE12, FAR1) and (STE12, GPAL).
This example shows that even for the same subset of genes, the design of the experiment is akey
issue for gene network inference. The first dataset was generated in atime seriesfashion, whereas
in the second one, there were changes in the conditions, but not in time. To properly analyze the
dynamics of expression, it is better to use time series microarray data (Bar-Joseph, 2004).

62

0.91

N

87
o072 (sTE20) ST

Figure 8. Gene network 3 (GN-3) recovered from the second dataset of observational expression data across a variety of
conditions. FUS1 and STE2, both regulated by STE12, appear linked and isolated in the network.

A last important comment can be made about the interaction (STE12, FARL), which
appearsin al three networks. According to information from the SCPD yeast promoter data-
base (SCPD, 2005), FAR1 hasonly one transcription factor, called MCM 1, whichisfound by a
motif tool. Nonetheless, our networks hint that STE12 also regulates FAR1 by some mechan-
ism, which could be through the binding of STE12 to an upstream region of that gene, as de-
picted in Figure 9. Indeed, a chromatin immuno-precipitation assay revealed that STE12 also
bindsto the upstream region of FARL (Ren et al., 2000), although it does not exhibit amotif for
STE12. This fact best exemplifies what kind of knowledge about transcriptional control one
could extract from GNs, and in that manner rationally design wet experiments.
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Figure 9. Gene networks inferred from all datasets indicate that STE12 is a transcriptional regulator of FARL that is not
found by motif tools.

CONCLUDING REMARKS

We haveintroduced aBN model for GNs, and we have tested it with both artificial and
rea biological networks. We analyzed the yeast pheromone response pathway, and we demon-
strated the usefulness of GNs as a computational approach for the analysis of transcriptional
regulation. In summary, a GN can be used, among other things, to i) define transcriptional
factors(activatorsand inhibitors) for atarget geneandii) find co-regulated genes. Theintention
of the efforts for developing both theories and software for network analysis is that these
networks could provide useful clues about biological systems, thus hel ping with the design and
refinement of wet experiments.

The BN model is suitable for small networks. A learning scheme that scales-up to a
large number of variables should beinvestigated, and isafuture goal. Nowadays, the finding of
an efficient reconstruction method with no constraints in the number of nodes using BN isa
cutting-edge problem (Bar-Joseph, 2004).

We are aware of the limitations of gene networks as away to understand the behavior
of abiological system, interms of phenotype. These occur because 1) thereisalow correlation
between expression level and protein level (Ideker et al., 2001), and 2) much of the cellular
regulation occurs post-trand ational ly, and genomic-scal e technol ogiesto measure protein level s
aretill at beginning stages of devel opment (Rice and Stolovitzky, 2004). For thisreason, and to
attenuate thisweakness, atrend in thisfield of network analysisisinformation fusion. Accord-
ing to this concept, the algorithms to learn the networks should incorporate other sources of
biological data, such as location data, sequence data and protein-protein interactions. Some
researchers have aready proposed modelsin this direction (e.g., Yamanashi et a., 2004; Ber-
nard and Hartemink, 2005) and thiswill become an active research topic in the next years.
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