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ABSTRACT. Gene regulatory networks, or simply gene networks
(GNs), have shown to be a promising approach that the bioinformatics
community has been developing for studying regulatory mechanisms in
biological systems. GNs are built from the genome-wide high-through-
put gene expression data that are often available from DNA microarray
experiments. Conceptually, GNs are (un)directed graphs, where the nodes
correspond to the genes and a link between a pair of genes denotes a
regulatory interaction that occurs at transcriptional level. In the present
study, we had two objectives: 1) to develop a framework for GN recon-
struction based on a Bayesian network model that captures direct inter-
actions between genes through nonparametric regression with B-splines,
and 2) to demonstrate the potential of GNs in the analysis of expression
data of a real biological system, the yeast pheromone response pathway.
Our framework also included a number of search schemes to learn the
network. We present an intuitive notion of GN theory as well as the
detailed mathematical foundations of the model. A comprehensive anal-
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ysis of the consistency of the model when tested with biological data
was done through the analysis of the GNs inferred for the yeast phero-
mone pathway. Our results agree fairly well with what was expected
based on the literature, and we developed some hypotheses about this
system. Using this analysis, we intended to provide a guide on how GNs
can be effectively used to study transcriptional regulation. We also dis-
cussed the limitations of GNs and the future direction of network analy-
sis for genomic data. The software is available upon request.

Key words: Gene networks, Bayesian networks,
Transcriptional regulation, Pheromone response pathway,
Saccharomyces cerevisiae

INTRODUCTION

Gene regulatory networks, or simply gene networks (GNs), have shown to be a prom-
ising approach that the bioinformatics community has been developing for studying regulatory
mechanisms in biological systems. These GNs are built from the genome-wide high-throughput
gene expression data (Figure 1) that are often available from DNA microarray experiments
(Friedman, 2004). Transcriptome data have become increasingly important because they pro-
vide an appropriate source  for studies of the systemic behavior of complex biological systems,
and the GNs are one of the computational tools that have been employed to this end.

Figure 1. General steps in recovering gene networks (GNs) from DNA microarray data. A. Image processing and
normalization of data. B. Inference of the network using expression data.

A DNA microarray experiment, which measures the levels of genes being expressed,
can be both designed to generate time series expression data (sampling at different times under
the same conditions) or it can be designed in a static manner, in which one  takes snapshots from
cells under a variety of physiological conditions (i.e., from different tissues). The microarray
generates the mRNA levels of transcripts, and these data can be used to reveal the hidden
“program” that controls gene expression in that biological system.

The expression program of a cell determines which group of genes is going to shift from
the basal to active transcription, and which genes are going to be inhibited. Several physical and
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mechanical systems are modeled as stochastic processes susceptible to noisy measures (Roweis
and Ghahramani, 1999). We can also borrow this approach to analyze biological systems, as we
consider that the system that we want to model is a program that controls gene expression at the
molecular level. In this system, we have a number of regulatory mechanisms, represented by
the transcriptional control strategies of the cell, such as the synthesis of specialized proteins as
transcription factors. We also know that this expression program works differently according to
external stimuli and to intracellular conditions, such as the concentration of some metabolites.
Furthermore, the output of this system is the mRNA levels of the genes that are involved. These
measures are, in turn, highly noisy, due to experimental and computational factors. In this sce-
nario, the question that arises is “What is the structure of the system that has generated this
expression data?” or equivalently, “How do genes interact among themselves to generate this
output?” The GNs aim to recover these interactions and therefore, the underlying system that
works at the transcriptional level, through so-called probabilistic graphical models.

Conceptually, GNs are (un)directed graphs, in which the nodes correspond to the genes
and a link between a pair of genes denotes a regulatory interaction between them (Figure 2).
Since we are assessing mRNA profiles, a link between two genes represents the relationship
that occurs at the transcriptional level, i.e., a transcription factor that is activating its target gene.

Figure 2. Graphical model representations of gene networks. In A, the gene network is an acyclic directed graph
(Friedman, 2004), Bayesian network, which denotes the direction of regulation and B an undirected graph (Schäfer and
Strimmer, 2005), where an edge only means that there is some kind of association between the linked genes.

For the purpose of inference of GN from data, graphical models provide the mathemati-
cal theory to determine the gene interactions. Since the pioneer work of Friedman et al. (2000),
several models have been proposed (for a review, see Xia et al. (2004), van Someren et al.
(2002), and de Jong (2002)). Bayesian networks (BN) are of special interest for two main
reasons: 1) the ability to handle noisy data, such as  microarray outputs, and 2) prior knowledge
can easily be incorporated into the model.

We developed a framework for GN reconstruction, based on a BN model that captures
direct interactions between genes through nonparametric regression and that has multiple search
schemes for learning the network. The base functions used for regression are B-splines. This
approach of function approximation by nonparametric regression leads to flexibility of the mo-
del, since it does not assume any fixed regulation function. The model has a number of search

A
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schemes that are based on two search algorithms, known as random hill-climbing and greedy
hill-climbing. This framework has many options for initializing the start graph, including empty,
random, score-driven, and partial correlation initialization.

METHODS

Before the mathematical enunciation of the model, it is important to discuss some prin-
ciples behind GN inference. The main objective of an algorithm to infer GNs is to find the
correct set of regulators for the genes in the net. Within the BN terminology, this means finding
the correct parents for each node. As an example, we assume that expression levels of a
regulated gene a are dictated by its parents genes. If gene a is mainly regulated by genes b and
c, on a universe of n genes, the goal is to identify, among all possible combinations of n-1 other
genes, that the ideal regulators (parents) for a are b and c. We also should find, from expression
data, that the mRNA levels of a have their best approximation when we take them as a function
of the parents’ expression, that is, E(a) ≈ F(E(b), E(c)). Hence, we need to make use of a
mathematical tool to perform this approximation of gene expression given its parents.

The model uses nonparametric regression with B-splines to capture the relationships
between genes, as introduced by Imoto et al. (2002) and further developed by Bastos and
Guimarães (2005). While some BN models for GNs use a fixed regulation law (Nachman et al.,
2004), our approach is flexible on this issue, not restricting the interactions to behavior to a fixed
function.

Bayesian network model for gene networks

Let X = (X
1
, X

2
, …, X

n
)T be a random n-dimensional vector containing the genes to be

analyzed, and assume that G is a directed graph. Under BN theory, genes are random variables,
and it is possible to decompose their joint probability into a product of conditional probabilities:

P(X
1
, X

2
, … , X

n
) = P(X

1
P

1
) P(X

2
P

2
) × … × P(X

n
P

n
)

where P
i
 = (P

1
(i) , P

2
(i), . . . , P

qi
(i) )T is a qi-dimensional vector of parent variables of X

i
 in G.

Suppose that s observations x
1
, x

2
, . . . , x

s
 of random vector X are performed, and the

observations of P
i
 are denoted p

1i
, p

2i
, . . . , p

si
, where p

ji
 = (p

j1
(i), . . . , p

jqi
(i))T is a qi-dimensional

observation vector of parent genes. For example, assume X
ns

 as an n × s matrix, given that each
of its components x

i
 (i = 1, . . . , n) is a vector of length s.

Therefore, X
ns

 = (x
1
, . . . , x

n
)T = (x

(1)
, . . . , x

(s)
) = (x

ij
)

i=1,...,n ; j=1,...,s
, x

i
 = (x

i1
, . . . , x

is
), x

j

= (x
1j
 , . . . , x

nj
)T, and x

i
T is the transposed vector of x

i
. If X

1
, for instance, has a parent vector

P
1
 = (X

4
,X

5
)T, we can obtain p

11
 = (x

14
, x

15
)T , . . . , p

s1
 = (x

s4
, x

s5
)T.

Equation 1 still holds if we replace the P probabilities by density functions:
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expression of gene i on sample j, x
ij
 and the expression levels of parents on j, p
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 = (p
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p
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In our case, the basis functions are degree 3 B-splines; the coefficients γ
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are estimated from data, and M
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 = 20. There is a special algorithm to learn the parameters from

data (Eilers and Marx, 1996). We do not detail how B-splines work as function approximation,
in nonparametric regression; it is enough to know that they will “construct” a regulation function
for each gene with the parent expression values. As we know the parents’ values p
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(i))T, the B-splines generate an estimated expression for gene i, .
It remains to evaluate the quality of the B-spline approximation for a given set of par-

ents P
i
. This is done with the probability density function customized for a nonparametric re-

gression model, using B-splines (Imoto and Konishi, 2000), when the ith gene has qi parents:

(Equation 4)

This result allows us to define the BN:
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Multiple search schemes and graph selection criterion

To learn the GN from data, we need a search algorithm that starts with an initial solution
and traverses, using a criterion, across the space of possible networks to find the optimal net-
work. To guide the search, we use scoring functions, also called evaluation criteria, which

(Equation 6)
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assign scores to each network according to its adherence to the observed data. Most of the
evaluation criteria used to analyze a network use a common idea, the maximization (or minimi-
zation) of the posterior probability,

where p(G) is the prior probability of the graph G, and p(X | G) is the probability of the observa-
tions given the graph. The term p(X) (prior probability of the data) is constant and not related to
p(G), and therefore will not be taken into account in the model’s evaluation. We use the Baye-
sian Information Criterion score, which has a term to measure the accuracy of the model in
predicting data and another term to penalize the complexity of the model. For that reason, the
more complex the graph structure, the worse its evaluation.

The space of solutions determined by all the acyclic directed graphs (a BN) grows
exponentially with the number of nodes (Chickering, 1996). Under this scenario, we have imple-
mented two heuristic search algorithms to seek for the optimal net, random hill-climbing and
greedy hill-climbing (Ott et al., 2004). Briefly, both random hill-climbing and greedy hill-climbing
make local changes in the network, through the following operations: 1) add a parent, 2) remove
a parent, 3) reverse link direction, and 4) nothing. The difference between them is that the
random approach chooses the modification at random, and only accepts it if it improves the
overall score, while the greedy one evaluates the best possible move, applying the operators for
the current network. Our implementation uses the greedy hill-climbing with many random re-
starts in order to better explore the search space.

The framework also has a variety of initialization options that define the starting graph
for the learning procedure. We can begin the search with an empty graph, a random graph, a
score-driven generated graph, and a graph that starts with interactions found by the partial
correlation analysis (de La Fuente et al., 2004).

Next we present the results on applying the model to artificial and real biological ex-
pression data.

RESULTS AND DISCUSSION

Comparing search schemes

To compare the multiple search schemes available in the framework, we have used an
artificial GN with 10 genes (Imoto et al., 2002). The artificial GN was sampled 100 times, each
one being perturbed by a Gaussian noise (to mimic microarray experiments). This network, as
well as the regulation functions that associate the genes, can be seen in Figure 3.

For random hill-climbing, we tested five different configurations for the initial network:

A. Score-driven: the parents of each gene are defined by the Bayesian information
criterion score;

B. Random: the number of parents is sampled from a uniform distribution and they are
chosen  randomly among the genes;

 (Equation 7)
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C. Partial correlation: we input the initial graph with the links identified by the partial
correlation analysis;

D. Partial correlation + score-driven: the links from the correlation analysis plus a score-
driven initialization;

E. Partial correlation + random: the links from the correlation analysis, followed by a
random initialization.

We performed 100 executions with each scheme and evaluated the distribution of the
score for the learned networks (Figure 4). The lower the score, the better the learned GN. We
see from this simulation that configurations A, B, and D produced solutions with scores in the
interval [3.5 × 103, 3.55 × 103], which suggests that they had analogous performances. Configu-
ration E generated solutions within two intervals. The best scores were achieved by scheme C,
in which we only used the links found by the correlation analysis to start the graph, producing
scores ranging from 3.31 × 103 to 3.36 × 103.

The same procedure was used with the greedy hill-climbing. After all simulations, we
applied a t-test to decide which configuration was the best. The t-test points to scheme C, that
is random hill-climbing and partial correlation initialization, as the best configuration to begin the
search with.

Pheromone response pathway

As an application using a real biological system, we have applied the BN model to the
Saccharomyces cerevisiae pheromone response pathway. This signaling pathway is respon-
sible for a series of complex physiological changes in preparation for mating in haploid yeast
cells, including changes in the expression of about 200 genes, arrest in the G1 phase of the cell
cycle and membrane fusion of mating partners (Bardwell, 2005).

The transmission of the signal starts when the pheromone peptide is recognized by cell
surface receptors, leading to a signaling cascade that ultimately activates genes needed for
mating. STE2 acts as the specific MATα cell pheromone receptor, while STE3 is the receptor

Figure 3. Artificial gene network used for simulation studies, along with hypothetical regulation functions. ε coefficients
represent the Gaussian noise that affects the expression of each gene.
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Figure 4. Histograms of the final scores for 100 executions of the framework, under different initialization schemes (see
text for details) and using the random hill-climbing search. BIC = Bayesian information criterion.

for the MATa cells (Lewin, 2000). After pheromone recognition, the G-protein coupled to the
pheromone receptor (a trimeric complex formed by GPA1, STE4 and STE18) recruits its effec-
tors in order to propagate the signal to an MAPK signaling cascade that finally activates the
STE12 transcription factor, the major player that will command the DNA transcription. The G-
protein effectors are the STE5/STE11 and FAR1/CDC24 complexes as well as the STE20
protein kinase (Bardwell, 2005). A schematic view of the mating pathway is shown in Figure 5.

We generated GNs for two microarray datasets. As the first dataset, we used a subset
of 12 genes from the cell cycle expression data generated by Spellman et al. (1998). These data
have 18 samples (time series experiment). Ten of the genes, STE2 or STE3, STE18, STE20,
STE5, STE11, STE7, FUS3, GPA1, FAR1, and STE12, act directly on the mating pathway,
while AGA1 and FUS1 are required for cell fusion (Bardwell, 2005). Figure 6 shows the GNs
(GN-1 and GN-2) inferred from this dataset, using STE2 and STE3, respectively. The nodes
were colored depending on the known function of the gene (see Table 1 for the mapping). For
this reason, it is desirable that genes with related functions occur near each other in the graph.

For each experiment, we ran 600 executions (i.e., 600 learned networks) and the output
network was defined by a “voting criterion”. In conformity with this criterion, we chose a
threshold, and only the links that appeared above this threshold across all executions composed
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Figure 5. Pheromone response signaling pathway. Steps in the transmission of the initial signal (pheromone peptide
recognition) from the membrane to the nucleus (STKE, 2005).

Figure 6. Gene networks (GN) inferred from the Spellman et al. (1998) yeast dataset. Experiment 1 (GN-1): 12 genes
involved with the pheromone response pathway, including STE2. Experiment 2 (GN-2): 12 genes, including STE3. In
both networks, STE12 is the gene that controls regulation at the transcriptional level in the pheromone response
pathway, which is fairly consistent with biological knowledge. See text for description of genes and analysis of the
recovered networks. The nodes are colored according to function (Table 1).
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the resultant network. In our experiments, we used a threshold value of 55% of the trials. The
program run took about 20 h in a Pentium 4 with 2.4 GHz and 1 GB RAM.

From Figure 6, we can observe that in both networks (GN-1 and GN-2), STE12 has an
important position, because it has the highest number of children. Thus, the recovered networks
suggest that this gene has an important role in transcriptional regulation. Indeed, as indicated by
the biological literature, STE12 is the most important transcription factor that is activated by the
pheromone response pathway (Zeitlinger et al., 2003), and it influences the transcription of a
number of other genes.

For GN-1, the network successfully predicts known regulatory interactions between
STE12 and genes STE2, FUS3 and FAR1, which are positively acting components of the path-
way (Bardwell, 2005). It did not capture known interactions with AGA1, a gene involved in cell
fusion (White and Rose, 2001), nor were interactions found with GPA1, a negative regulator of
the pathway (Bardwell, 2005). However, GN-1 reports three interesting relations of STE12
with STE20, STE5 and STE11. STE5 is an adaptor protein that binds to and activates STE11,
the upstream kinase on the MAPK cascade. STE20 is another protein in the neighborhood that
is another activator for STE11. GN-1 indicates some kind of regulation (activation or inhibition)
of these genes by STE12, which we did not find evidenced in a specialized database (SCPD,
2005). We hypothesize that STE12 is in someway upregulating these genes, because MAPK
targets will act towards maintaining the transcription of STE12 target genes (e.g., inhibition of
Dig1 and Dig2, which are inhibitors of STE12, thus benefiting the maintainability of mating
genes transcription). The diagram in Figure 7 provides an illustration of this scenario. The links
around STE12, inferred by GN-1, are highlighted (red)  and the links in black depict interactions
at protein level. This diagram also allows one to note that GNs encode protein-DNA interactions
besides only protein-protein relationships, as the case of the signaling pathway in Figure 5.

GN-1 also indicates that FAR1 expression is controlled by STE12 and GPA1. One of
the functions of FAR1 is to promote G1 cell-cycle arrest. Given the fact that GPA1 is a negative

Table 1. Color and function of genes set that appear in the networks (adapted from Hartemink et al., 2002).

Gene Color Function of corresponding protein

STE2 magenta transmembrane receptor peptide (present only in MATa strains)
STE3 red transmembrane receptor peptide (present only in MATα strains)
GPA1 green component of the heterotrimeric G-protein (Gα)
STE18 green component of the heterotrimeric G-protein (Gβ)
FUS3 blue mitogen-activated protein kinase (MAPK)
STE7 yellow MAPK kinase (MAPKK)
STE11 yellow MAPKK kinase (MAPKKK)
STE5 yellow scaffolding peptide holding together Fus3, Ste7, and Ste11 in a large complex
STE12 blue transcriptional activator
STE20 orange p21-activated protein kinase (PAK)
FAR1 blue substrate of Fus3 that leads to G1 arrest; known to bind to STE4 as part received of

complex of proteins necessary for establishing cell polarity required for shmoo formation
after mating signal has been received

FUS1 blue required for cell fusion during mating
AGA1 blue anchor subunit of α-agglutinin complex; mediates attachment of Aga2 to cell surface
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Figure 7. Wiring diagram of the yeast pheromone response pathway (adapted from Bardwell, 2005), along with some
regulatory links for STE12, found by gene network-1. A black line indicates a regulatory relationship (activation or
inhibition) at the protein level (binding, phosphorylation, and so on). Red-labeled lines identify some of the genes
regulated by STE12 (protein-DNA interactions).

regulator of the pheromone response (see above), this link (GPA1, FAR1) is a feasible hypo-
thesis, and it remains to be determined by which mechanism GPA1 down-regulates FAR1.

STE18 is the gene with the second-most regulatory connections in GN-1 (Figure 6).
STE18 expresses one of the subunits of the G-protein complex, bound to the pheromone recep-
tor. GN-1 shows that mRNA expression of STE18 affects the regulation of STE7 and STE11
(both protein kinases), as well as STE12, the main transcription factor.

GN-2, which contains STE3 instead of STE2, has also revealed STE12 as the most
important gene in the transcriptional regulation of the pathway. GN-2 has found the same inter-
actions around STE12 in the first experiment, with STE3 (in place of STE2), FUS3, FAR1,
STE20, STE5 (inverted), and STE11, previous justified. It has also found two interactions evi-
denced in the literature (Bardwell, 2005) not found by GN-1: a direct interaction (STE12, GPA1)
and a second-level interaction (STE12, AGA1).

The second dataset (Hartemink et al., 2002) had 12 genes that are directly or closely
involved with the mating pathway, and it was used to infer a third network GN-3. The expres-
sion data consisted of 20 observations of the two types of haploid yeast cells (α and a), under
several conditions, including exposure to different nutritive media, and exposure to various types
of stress, such as heat, oxidative species, excessive acidity, and excessive alkalinity.

GN-3 is presented in Figure 8. STE12 again is the most connected gene, but here some
important regulatory connections, such as (STE12, FUS1) and (STE12, STE2) were not discov-
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ered, even though several others were identified, including (STE12, FAR1) and (STE12, GPA1).
This example shows that even for the same subset of genes, the design of the experiment is a key
issue for gene network inference. The first dataset was generated in a time series fashion, whereas
in the second one, there were changes in the conditions, but not in time. To properly analyze the
dynamics of expression, it is better to use time series microarray data (Bar-Joseph, 2004).

Figure 8. Gene network 3 (GN-3) recovered from the second dataset of observational expression data across a variety of
conditions. FUS1 and STE2, both regulated by STE12, appear linked and isolated in the network.

A last important comment can be made about the interaction (STE12, FAR1), which
appears in all three networks. According to information from the SCPD yeast promoter data-
base (SCPD, 2005), FAR1 has only one transcription factor, called MCM1, which is found by a
motif tool. Nonetheless, our networks hint that STE12 also regulates FAR1 by some mechan-
ism, which could be through the binding of STE12 to an upstream region of that gene, as de-
picted in Figure 9. Indeed, a chromatin immuno-precipitation assay revealed that STE12 also
binds to the upstream region of FAR1 (Ren et al., 2000), although it does not exhibit a motif for
STE12. This fact best exemplifies what kind of knowledge about transcriptional control one
could extract from GNs, and in that manner rationally design wet experiments.



D.F. Veiga et al. 266

Genetics and Molecular Research 5 (1): 254-268 (2006) www.funpecrp.com.br

Figure 9. Gene networks inferred from all datasets indicate that STE12 is a transcriptional regulator of FAR1 that is not
found by motif tools.

CONCLUDING REMARKS

We have introduced a BN model for GNs, and we have tested it with both artificial and
real biological networks. We analyzed the yeast pheromone response pathway, and we demon-
strated the usefulness of GNs as a computational approach for the analysis of transcriptional
regulation. In summary, a GN can be used, among other things, to i) define transcriptional
factors (activators and inhibitors) for a target gene and ii) find co-regulated genes. The intention
of the efforts for developing both theories and software for network analysis is that these
networks could provide useful clues about biological systems, thus helping with the design and
refinement of wet experiments.

The BN model is suitable for small networks. A learning scheme that scales-up to a
large number of variables should be investigated, and is a future goal. Nowadays, the finding of
an efficient reconstruction method with no constraints in the number of nodes using BN is a
cutting-edge problem (Bar-Joseph, 2004).

We are aware of the limitations of gene networks as a way to understand the behavior
of a biological system, in terms of phenotype. These occur because 1) there is a low correlation
between expression level and protein level (Ideker et al., 2001), and 2) much of the cellular
regulation occurs post-translationally, and genomic-scale technologies to measure protein levels
are still at beginning stages of development (Rice and Stolovitzky, 2004). For this reason, and to
attenuate this weakness, a trend in this field of network analysis is information fusion. Accord-
ing to this concept, the algorithms to learn the networks should incorporate other sources of
biological data, such as location data, sequence data and protein-protein interactions. Some
researchers have already proposed models in this direction (e.g., Yamanashi et al., 2004; Ber-
nard and Hartemink, 2005) and this will become an active research topic in the next years.
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