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ABSTRACT. The molecular clock theory has greatly enlightened our
understanding of macroevolutionary events. Maximum likelihood (ML)
estimation of divergence times involves the adoption of fixed calibration
points, and the confidence intervals associated with the estimates are
generally very narrow. The credibility intervals are inferred assuming
that the estimates are normally distributed, which may not be the case.
Moreover, calculation of standard errors is usually carried out by the
curvature method and is complicated by the difficulty in approximating
second derivatives of the likelihood function. In this study, a standard
primate phylogeny was used to examine the standard errors of ML esti-
mates via the bootstrap method. Confidence intervals were also assessed
from the posterior distribution of divergence times inferred via Bayesian
Markov Chain Monte Carlo. For the primate topology under evaluation,
no significant differences were found between the bootstrap and the
curvature methods. Also, Bayesian confidence intervals were always
wider than those obtained by ML.
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INTRODUCTION

The maximum likelihood (ML) method of phylogenetic reconstruction was formalized
by Felsenstein (1981) and further developed by other authors (Kishino and Hasegawa, 1989;
Kishino et al., 1990; Hasegawa et al., 1991). This method is known to perform very well
under many circumstances in which other algorithms, such as parsimony and distance
matrix-based ones (e.g., neighbor-joining), are error prone (Huelsenbeck, 1995). The good
performance of ML has been attributed to the capacity for full incorporation of the phyloge-
netic information found in the data plus the inclusion of models of sequence evolution (Yang,
1994b).

Although the ML algorithm presents several advantages, it is computationally intensive,
inhibiting its application when the number of sequences is large. Another delicate issue is the
estimation of the standard errors (SEs) of ML estimates. This quantity is generally calculated by
inverting the matrix of second derivatives of the likelihood function with respect to parameters
(the curvature method, Edwards, 1972). In phylogenies, however, the number of parameters is
often very large (e.g., branch lengths, transition/transversion rate ratio, α parameter of the
gamma distribution, etc.), and the numerical approximation of second derivatives of the likeli-
hood function may result in unreliable estimates (Yang, 1997). Moreover, ML estimates may not
be approximated by the normal distribution, and thus the calculation of confidence intervals
using the estimated SE and the normal density function would be biased.

In practice, however, this is not a problem. Researchers seldom use SEs of ML param-
eters in molecular phylogenetics, since the likelihood ratio is the preferred hypothesis testing
procedure. But, in molecular clock studies, SEs are important to establish confidence intervals
for divergence time estimates. Parametric estimates, such as divergence times, are biologically
uninformative without associated errors. Hence, an evaluation of SEs and determination of the
reliability of the normal approximation to the ML estimates are necessary. Such a study should
be carried out by simulating sequences on topologies with known SEs. One could then test the
curvature or any other method by verifying their accuracy in recovering correct SEs. Unfortu-
nately, a simulation of this kind is difficult to perform in phylogenies.

Nevertheless, an independent measure of SE of the ML estimates can be obtained.
This can be achieved by means of the bootstrap (Efron, 1979), which is a widely used statistical
method to infer confidence intervals for parameters that have been successfully applied in
molecular evolution and phylogenetics (Felsenstein, 1985; Nei and Kumar, 2001). Although one
cannot test the systematic errors of a method by using another method, the bootstrap technique
does not use the curvature of the likelihood surface to inform about the credibility of a param-
eter. Therefore, if the curvature and the bootstrap methods calculate identical SEs, it would
indicate that the numerical approximation of second derivatives was accurate, since it is unlikely
to wrongly infer the same value of SE twice.

In the present study, the bootstrap is used to infer the SEs of parameters estimated by
ML of a standard primate phylogeny. A comparison was made between the SEs estimated by
the curvature method and those obtained by the bootstrap technique. The confidence intervals
inferred by the normal approximation to the ML estimates with those calculated using bootstrapping
were also compared. Finally, 95% credibility intervals were also assessed by the recent Baye-
sian Markov Chain Monte Carlo (MCMC) method of Thorne and collaborators (Thorne et al.,
1998; Kishino et al., 2001; Thorne and Kishino, 2002).
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METHODS

The curvature method

Given an alignment X of s species and n sites, the likelihood for site h conditional on
parameter θ is , and is estimated by the algorithm of Felsenstein (1981). The likelihood of
the given alignment is then

The ML estimate  is obtained by ∂L/∂θ = 0.
The usual method of communicating information about parameter θ is to obtain the

second-order Taylor series approximation to the support curve (the ln L × θ plot) at :

which becomes

Then, the second partial differential coefficients of the above equation are used to
calculate the observed formation of the curve near  (Edwards, 1972). This value is given by

Since the observed formation offers a measure of the radius of the curvature near , its
square root (w), also called the span of the support curve, is a measure of the standard error of
the ML estimate  (  ± w). If we assume the normality of the ML estimate, the (1 - α) × 100%
confidence interval for  is  ± zα/2

w. For example, the 95% confidence interval is given by  ±
1.96w.

The bootstrap

Consider alignment X with n sites, from which ML estimation  is inferred by applying
the algorithm of Felsenstein (1981) on the assumed phylogenetic tree. Then, a bootstrap repli-
cate can be generated by resampling (with replacement) n sites from X (Felsenstein, 1985). The
bootstrap standard error of  is estimated by
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where B is the number of replicates used,  is the ML estimation for replicate i, and  is the
average of all B ML estimations of θ. The standard (1 - α) × 100% bootstrap confidence limit
for  is  ± zα/2

SE( ). However, several other measures of bootstrap confidence limits have
been introduced (Manly, 1997). In the present study, the percentile method of Hall (1992) was
also used. This confidence interval is given by Pr(θ - ε

H
 < θ < θ - ε

L
 ) = 1 - α, where ε

H
 and ε

L

(the error limits) are obtained from the (1 - α) × 100% confidence interval of the distribution of
ε

B 
=  - , the difference between the estimate for a bootstrap replicate and the sample

estimate . The distribution of the error ε
B
 should be an approximation of the error in , i.e., ε

=  - θ.

Empirical study

Sequences of the mitochondrial ND5 gene were retrieved from selected primate ge-
nomes available in GeneBank. Eight species were used in this study: Homo sapiens, Pan
troglodytes, Pongo pygmaeus, Hylobates lar, Macaca sylvanus, Papio hamadryas, Cebus
albifrons, and the outgroup Lemur catta (Figure 1). The phylogenetic relationship among these
species is not debated by any molecular or morphological work; hence, the topology in Figure 1
was assumed. The final alignment was composed of 1,806 sites. The HKY85+Γ

5
 model of

sequence evolution was used; it corrects for unequal base frequencies, transition/transversion
rate ratio and accommodates among site rate heterogeneity using the discrete approximation of
the gamma distribution with five categories (Hasegawa et al., 1985; Yang, 1994a). The homi-
noid-cercopithecoid separation at 25 million years ago (Mya) was used as a calibration point
(Schrago and Russo, 2003).

Figure 1. Standard primate phylogeny used in this study. The hominoid-cercopithecoid calibration point is depicted by
the black circle. Branch lengths (times) are indicated following the classification used in the text. Mya = million years ago.
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Since the molecular clock was assumed, the length of sister branches is constrained to
be equal and, hence, a total of nine parameters were estimated by ML for the tree used: six
branch lengths, i.e., times, the rate of molecular evolution µ (see Yang and Yoder, 2003), param-
eter κ (ts./tv. rate ratio) and parameter α of the gamma distribution. The likelihood function is
thus L(XΘ), with Θ = b

1
,b

2
,b

3
,b

4
,b

5
,b

6
, µ , κ, α). However, since the aim of the present study

was to evaluate time parameters only; the results for parameters µ , κ, and α were ignored. The
divergence time of the outgroup L. catta (b

1
, Figure 1) was also ignored.

Maximum likelihood analyses were conducted in PAML 3.14 (Yang, 1997), and 1,000
bootstrap replicates of the original data set were also obtained in PAML. For each B replicate,
the vector of parameters was estimated by ML ( ). Then, bootstrap SEs and confidence
intervals were calculated for each parameter using the procedure detailed in the previous sec-
tion.

Further statistical analyses of the bootstrap samples were conducted in the R program-
ming environment (www.r-project.org). Bayesian estimates of divergence times were obtained
with the MULTIDISTRIBUTE program package (http://statgen.ncsu.edu/thorne/
multidivtime.html). The Bayes method needs the adoption of maximum and minimum limits for
the calibrations, instead of fixed points. Therefore, a narrow interval (24.5-25.5) was used to
calibrate the hominoid-cercopithecoid divergence. This was done in order to make Bayes and
ML estimates comparable, since ML uses fixed (25 Mya) calibration. The posterior distribution
of divergence times was approximated by the MCMC algorithm. After a burn-in period of
50,000 generations, the Markov Chain was visited every 100 cycles, until 10,000 samples were
taken.

RESULTS AND DISCUSSION

Bootstrap SEs were very close to those estimated by the curvature method (Table 1).
The difference found between the two approaches was insignificant in practice. The highest
difference value was found for parameter b

2 
(0.05), the age of the New World primate split

from Old World anthropoids, while the smallest differences were calculated for the smallest
branches b

5
 and b

6
.

Table 1. Standard errors (SE) for maximum likelihood estimates (MLE) calculated by the curvature and the boot-
strap.

Parameter MLE Bootstrap mean Curvature SE Bootstrap SE

b
2

37.704 37.754 2.288 2.338
b

3
16.745 16.799 1.003 1.048

b
4

13.185 13.199 0.928 0.974
b

5
6.301 6.333 0.599 0.584

b
6

11.216 11.197 0.894 0.882

The numerical calculation of inverted second derivatives with respect to parameters
yielded essentially the same SEs as those obtained by the bootstrap techniques. It is important to
notice that the iteration algorithm used to calculate derivatives is based on the difference ap-
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proximation (Gill and Murray, 1981). In order to check the robustness of the estimates, the value
of the variable that controls this approximation should be slightly changed (Yang, 1997). In this
study, curvature SEs were identically estimated independent of the fine-tuning conditions of the
algorithm (results not shown).

ML confidence intervals were very similar, independent of the method used (Table 2).
Therefore, the normal approximation to the ML estimates worked as well as the bootstrap for
the parameters in the tree that was considered. Actually, if sample size is very large, it is ex-
pected the ML estimate to be normally distributed around the true parameter value (Wackerly et
al., 2001). Both bootstrap SEs rendered almost identical confidence intervals. The distributions
of the bootstrap estimates were very close to the normal curve (Figure 2), and thus any measure
of bootstrap confidence limits would likely be the same.

Table 2. Ninety-five percent confidence intervals for maximum likelihood estimates calculated with several meth-
ods.

Parameter Curvature Bootstrap Bootstrap Bayesian
(Standard) (Hall’s percentile)

b
2

33.220 - 42.188 33.122 - 42.216 32.891 - 41.857 31.352 - 44.824
b

3
14.779 - 18.711 14.691 - 18.768 14.620 - 18.669 13.238 - 19.411

b
4

11.366 - 15.004 11.276 - 15.065 11.206 - 15.017 9.478 - 15.548
b

5
5.127 - 7.475 5.156 - 7.428 5.075 - 7.296 4.005 - 7.890

b
6

9.464 - 12.968 9.487 - 12.918 9.384 - 12.894 8.995 - 15.163

Figure 2. Histogram of 1,000 bootstrap replicates for each parameter.
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The major difference found in the analyses was the difference between ML and the
Bayesian method. Although Bayesian posterior probabilities and ML confidence intervals (cal-
culated by the curvature or the bootstrap) are not analogous measures, in practice, they both
inform the researcher about the credibility of the divergence times inferred. Bayesian estimates
of 95% credibility intervals were wider than those obtained by ML for all parameters investi-
gated (Table 2, Figure 3). This behavior was already reported by Yang and Yoder (2003), who
suggested that narrow ML intervals could be caused by inappropriate assumption of the normal-
ity of the ML estimate or by not considering the uncertainties of calibrations, which are fixed.

Figure 3. Posterior distribution for parameters inferred by the Bayesian MCMC method of Thorne and collaborators.

Here, when normality of the ML estimate was assumed, confidence intervals were
similar to those from the bootstrap and the Bayesian calibration point was very narrow. There-
fore, an explanation for the difference between ML and Bayesian confidence intervals is not
simple. In fact, this explanation is theoretically meaningless. ML and Bayes are distinct ap-
proaches to statistical inference, and the researcher must evaluate if the use of prior distribu-
tions and the modeling of divergence times and rates of molecular evolution are realistic. It
could also be argued that the differences between ML and Bayesian credibility intervals were
due to failure in approximating the Bayesian posterior distribution by the MCMC algorithm. This
could be caused by factors such as insufficient burn-in period. In this study this is not the case.
MCMC analyses were conducted several times with different seed numbers, prior and heating
periods. In every case, the posterior approximations were the same.
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The analyses presented here showed that the SEs of ML estimates calculated by the
curvature method and those independently inferred by the two bootstrap approaches were fun-
damentally unaltered and behaved regularly. Although not large, differences were found be-
tween the ML and Bayesian methods. In practice, such discrepancies are of little importance if
the objective is to obtain time scales for splits between lineages.

Finally, it is reasonable to assume that the correspondence between the curvature SE
and those from bootstrap found here should also be found in data sets including a similar number
of taxa, with a sequence length of at least 1,806 bp (the size of the ND5 gene), using models of
evolution with the number of parameters up to that of the HKY85+ Γ and adopting a minimum
of one calibration point. However, a thorough investigation of this issue must be carried out with
simulation studies that force variation on several parameters that potentially affect the SEs of
ML estimates of divergence times, such as the number of sequences used, sequence length,
model of sequence evolution, number of calibration points adopted, and tree shape.
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