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Abstract. We show here an example of the application of a novel 
method, MUTIC (model utilization-based clustering), used for identify-
ing complex interactions between genes or gene categories based on 
gene expression data. The method deals with binary categorical data 
which consist of a set of gene expression profiles divided into two bio-
logically meaningful categories. It does not require data from multiple 
time points. Gene expression profiles are represented by feature vec-
tors whose component features are either gene expression values, or 
averaged expression values corresponding to gene ontology or protein 
information resource categories. A supervised learning algorithm (ge-
netic programming) is used to learn an ensemble of classification mod-
els distinguishing the two categories based on the feature vectors cor-
responding to their members. Each feature is associated with a “model 
utilization vector”, which has an entry for each high-quality classifica-
tion model found, indicating whether or not the feature was used in that 
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INTRODUCTION

A variety of methods for analyzing gene expression data has arisen in recent years, in-
cluding but not limited to: identifying which genes are maximally differentiated between two 
categories; clustering genes based on co-expression across multiple samples or multiple experi-
ments (Eisen et al., 1998; Spellman et al., 1998; Ben-Dor et al., 1999; Tamayo et al., 1999; Sharan 
and Shamir, 2000; Sharan et al., 2001; Dopazo and Azuaje, 2005); using supervised categoriza-
tion algorithms to learn rules distinguishing two or more categories of gene expression profiles 
from each other (Golub et al., 1999; Brown et al., 2000; Dudoit et al., 2002; Guyon et al., 2002; 
Cho et al., 2004), and inference of genetic interaction networks from gene expression time series 
data (Markowetz and Spang, 2003; Vert and Kanehisa, 2003; Markowetz, 2004; Nachman et 
al., 2004; Sohler et al., 2004). These methods serve various purposes, such as induction of diag-
nostic models, qualitative understanding of the biological phenomena underlying a dataset, and 
identification of specific actors (e.g., genes, proteins) that may be involved in a certain biological 
phenomenon. In this paper, we use model utilization-based clustering (MUTIC), a novel method 
for gene expression data analysis, whose goal is to identify the interactions among genes, proteins 
and biological processes that are most relevant to the phenotypic distinction underlying a given 
binary categorization of gene expression profiles. 

Clustering is the most common tool for interaction identification. By determining 
which genes or gene categories have expression-value profiles that cluster together across 
multiple samples or multiple experiments, one gets a picture of which genes are “associated” 
with each other. However, these associations do not usually have a clear interpretation, as co-
expression can occur for a variety of reasons. Furthermore, many types of interactions are in 
principle not identifiable by directly clustering gene expression values. For instance, one will 
not recognize ternary interactions wherein, say, C is only highly expressed when both A and B 
are highly expressed together.

model. These utilization vectors are then clustered using a variant of 
hierarchical clustering called Omniclust. The result is a set of model 
utilization-based clusters, in which features are gathered together if they 
are often considered together by classification models - which may be 
because they are co-expressed, or may be for subtler reasons involving 
multi-gene interactions. The MUTIC method is illustrated here by ap-
plying it to a dataset regarding gene expression in prostate cancer and 
control samples. Compared to traditional expression-based clustering, 
MUTIC yields clusters that have higher mathematical quality (in the 
sense of homogeneity and separation) and that also yield novel insights 
into the underlying biological processes.
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The technique used here, MUTIC, is oriented toward capturing interactions that ordinary 
expression-based clustering misses. The end result of MUTIC looks superficially similar to that of 
traditional gene expression clustering: one obtains a set of clusters (of genes or gene categories), 
where the elements of a cluster are hypothesized to have a significant interrelationship. What is 
novel is that these clusters are not determined based on co-expression but via a more involved 
analysis. The semantics of the clusters is different: MUTIC clusters represent genes or gene cat-
egories that are usefully considered in combination when formulating classification rules distin-
guishing one category of gene expression profiles from another. The elements of such a cluster 
may or may not be co-expressed across the set of gene expression profiles under analysis.

The MUTIC method is described in detail elsewhere (Goertzel et al., 2006). Here, 
we discuss its application to a dataset regarding human gene expression, drawn from pros-
tate tumor and control cells. In the context of that dataset, we review a number of potentially 
interesting biological interactions that the new method finds but traditional expression-based 
clustering misses. 

Experimental setup

In this section we describe the particularities of the application of MUTIC reported 
here, encompassing the dataset and data preprocessing as well as the parameters used by the 
several MUTIC phases properly told.

Test dataset

The prostate tumor dataset used for validating the method is composed of a train dataset 
containing 102 samples (52 prostate tumor tissue samples, or cases, and 50 controls correspond-
ing to normal tissue samples) and a test dataset containing 34 samples (25 cases, 9 controls). The 
train dataset has been reported by Singh et al. (2002), while the test dataset was reported in an-
other experiment (Welsh et al., 2001). The use of this train-test pair in a classification experiment 
was in turn reported by Tan and Gilbert (2003). This reference indeed points to the URL where 
the datasets (as they were used here) are available: http://sdmc.lit.org.sg/GEDatasets/Datasets.
html#Prostate. In both train and test datasets, each sample was characterized by the gene expres-
sion of 12,600 features. Nevertheless, most of those features showed suspicious near-zero expres-
sion values in all samples. Those null-valued features in either train or test sets were removed and 
as a result only 1704 genes were effectively used throughout the analysis.

This dataset then underwent our process of enhancement, which consists in adding syn-
thetic features corresponding to the GO (gene ontology) and PIR (proteing information resource) 
categories. Each synthetic feature corresponding to a given GO or PIR category contains for each 
sample in the dataset the average expression value of all genes present in the dataset and under 
that category. The enhancement process added 2430 GO-related and 644 PIR-related features.

Experimental and analytical setup

The prostate tumor dataset was used to produce Utility Profiles, by running a large 
number of differently configured genetic programming-based categorization processes to create 
a diverse classification model ensemble. The execution of the genetic programming algorithm 
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was done using the Biomind ArrayGenius Software, available at http://ondemand.biomind.
com:8090. In particular, we used the metatasking capability of ArrayGenius: the software, 
upon receiving the dataset as input, was instructed to run 1000 genetic programming (GP; 
Koza, 1992) classification tasks with parameters selected randomly within specified ranges. 
Ranges used for parameter variation are detailed below (parameters not mentioned were left at 
their ArrayGenius default values):

•	 All combinations of use of direct and categorial features (see section above on fea-
ture vector enhancement) were allowed.

•	 Each GP task used only the top d most differentiated (among categories) features in 
the dataset, where d is a randomly chosen number between 10 and 1000.

•	 In terms of GP-specific parameters, fitness function was varied across all available 
alternatives.

Utility Profiles were then built using the results of the thousand categorization tests 
produced by the means above. Recalling the basics of MUTIC, a utility profile of a given fea-
ture is the vector composed of the utility or importance values of that feature in each one of the 
1000 tests. Utility in this context is simply the frequency of utilization of the feature across the 
classifiers in an ensemble generated by a given task.

The Utility Profiles produced in this manner were then used as inputs for Omniclust 
clustering. This produces a set of feature clusters (where each feature can be a gene or a gene 
category, as described above). These clusters may have a more general semantics than clusters 
formed directly from gene expression vectors using standard methods. In these utilization-
based clusters, features are gathered together if classification models habitually find it useful 
to consider them together. 

For the sake of comparison, we also used Omniclust to perform clustering of the prostate 
cancer (PC) dataset in the traditional way, by simply clustering the feature vectors associated with 
the gene expression profiles. As usual in the MUTIC approach, only the clusters at the first level 
of the dendrogram produced by Omniclust were analyzed both quantitative and qualitatively.

The purpose of the quantitative comparison is to show that the clusters obtained us-
ing MUTIC are of high quality in a purely mathematical sense. The purpose of the qualitative 
analysis is to look for novel biological insights that MUTIC may have uncovered. The results 
obtained with both approaches are detailed in the next section.

RESULTS

Quantitative comparison

Clustering is a qualitative data analysis method; there are no robust, commonly ac-
cepted, objective metrics for comparing different clustering algorithms to each other. Dopazo 
and Azuaje (2005) gave a comprehensive overview of contemporary clustering methods and a 
review of methods for comparing them to each other. 

Choosing a variant of a standard technique, we measured the quality of a clustering as 
the product homogeneity x separation. Homogeneity is calculated as 1/(1+A) where A is the 
average of the distances of all members of the cluster to their nearest cluster-mates. Separation 
is simply the minimum distance from any given member of the cluster to elements outside the 
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cluster. These particular definitions of separation and homogeneity were used in order to mini-
mize the influence of the size of the cluster on its quality. (As we have observed empirically, 
using more traditional definitions of separation and homogeneity, e.g., defining homogeneity as 
the average of all similarities among all members of a cluster, causes small clusters to habitu-
ally display a better quality than larger ones, which is an undesirable bias.)

If one straightforwardly compares MUTIC to plain expression-based clustering, ac-
cording to this cluster quality metric, one finds that MUTIC produces dramatically clearer 
clusters, with roughly 10 times greater quality. This comparison, however, is somewhat unfair 
to the standard method, because the separation values are bound to be larger for MUTIC sim-
ply because it involves fewer features (only the ones that have nonzero model usage). Thus, to 
make a fairer comparison, we also tried standard expression-based clustering using a smaller 
set of features: only the N most-differentiated features, where differentiation was measured 
using the same categories used for supervised categorization, and N = 1000 was chosen as the 
same number of features having nontrivial Utility Profiles. (N = 1000 was a consequence of 
the feature selection policy used in the GP classification experiments, explained above.) The 
results of this comparison are shown in Table 1. As we see, MUTIC still comes out far ahead 
here, with a cluster quality still around one order of magnitude higher.

Table 1. Clustering qualities.

Clustering Quality of 1st cluster Quality of 20th cluster

Utilization-based clustering 0.6226 0.5423
Expression-based clustering 0.0550 0.0083
Expression-based clustering, 1000 most differentiated 
features

0.0948 0.0111

Expression-based clustering, 1000 most differentiated 
features, using Average sparseness policy

0.3695 0.1695

Expression-based clustering, 1000 most differentiated 
features, using Median sparseness policy

0.4149 0.1819

Expression-based clustering, 1000 most differentiated 
features, using Custom sparseness policy

0.3691 0.2683

Another possible source of unfair comparisons could be the sparse nature of utility-based 
vectors as compared to gene expression vectors. In order to detect a potential unfair advantage based 
on sparseness, we applied three different sparseness policies to the gene expression vectors:

•	 Average Policy: all values in a given feature vector below the average of those 
values were set to zero.

•	 Median Policy: all values in a given feature vector below the median of those val-
ues were set to zero.

•	 Custom Policy: in a generalization of the Median Policy, in this one, all the lowest 
P % values in a given feature vector are set to zero. P was chosen as the average 
sparseness ratio (number of zero-ed dimensions over the total number of dimen-
sions) in the utility-based data.
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Using any one of these three sparseness policies raises the quality of the expression-
based clustering to the same order of magnitude as the utility-based clustering. Nevertheless, 
even the highest quality value (achieved using the Median Policy) is roughly 2/3 of the quality 
obtained for utility-based clustering. Also, the quality differences between the 1st and 20th 
ranked clusters indicate a sharper decline of quality as rank increases when clustering sparsi-
fied expression vectors as opposed to utility vectors. It appears, therefore, that only part of the 
high quality of the utility-based clusters is explained by the sparseness of the utility vectors, as 
shown by Goertzel et al. (2006). 

We emphasize that our cluster quality assessment method was in no way engineered 
to favor the utilization-based clusters; and nor was the Omniclust method devised specifically 
to showcase utilization-based clustering. In fact, it was devised for standard expression-based 
clustering and is used for this purpose within the Biomind ArrayGenius product. The essential 
result is that the clusters found via utilization-based clustering are drastically more clear and 
distinct than what traditional expression-based clustering yields.

Qualitative comparison

Below are the analyses of the top 5 quality clusters from the PC dataset.
Cluster #1 includes the features: 
•	 960_g_at 	 Cell division cycle 42 (CDC42)
•	 GO:0005220 	 Inositol 1,4,5-triphosphate-sensitive calcium-release channel activity 

	 (INS3P)
•	 NM_004651 	 Homo sapiens ubiquitin specific protease 11 (USP11)
•	 GO:0004868 	 Serpin 
•	 GO:0007422 	 Peripheral nervous system development (PNSD)
•	 GO:0019887 	 Protein kinase regulator activity
•	 SF002466 	 Glycophorin
•	 GO:0019867 	 Outer membrane
•	 GO:0003700 	 Transcription factor activity
•	 NM_014015 	 Homo sapiens dexamethasone-induced transcript (DEXI)
•	 XM_032901 	 Homo sapiens KIAA0226 gene product (KIAA0226)
This cluster displays various features with direct and indirect relation to PC, the majority 

has roles in signal transduction that lead to cell differentiation and multiplication (CDC42, INS3P, 
USP11, protein kinase regulator activity, transcription factor activity, DEXI). CDC42 is directly 
related to cell cycle and PC (Erlich et al., 2006). Active BRCA2 leads to cell growth and prolif-
eration in PC, and USP11 seems to inactivate BRCA2 ubiquitination in breast cancer (Schoenfeld 
et al., 2004; Moro et al., 2006). Its role in PC modulation with BRCA2 should be studied further. 
Protein kinase regulator and transcription factor activities together with DEXI are related to cell 
transduction pathways, both already described having roles in PC (Zerbini et al., 2005; Clark 
et al., 2005; Shimada et al., 2006). DEXI is known to suppress PC tumor angiogenesis (Yano et 
al., 2006). Some other features, such as serpin and PNSD, have distinct roles in PC. The first, is 
a family of proteins known to be bound to 70-90% circulating PSA, the prostate-specific antigen, 
a known PC marker (Stephan et al., 2000; Kuvibidila and Rayford, 2006). Peripheral nervous 
systems are known to regulate prostate growth and function. There have been studies linking 
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neuropeptide receptors from peripheral nervous system (muscarinic) to PC growth modulation 
(Ventura et al., 2002). Some other features have unkown roles in PC (KIAA0226, glycophorin 
and outer membrane). The roles of these features in PC should be studied more carefully.

Cluster #2 includes the features:
•	 1280_i_at	 Serine/threonine kinase (STK)
•	 GO:0015629 	 Actin cytoskeleton 
•	 NM_003374 	 Homo sapiens voltage-dependent anion channel 1 (VDAC1)
•	 GO:0005635 	 Nuclear membrane
•	 GO:0005778 	 Peroxisomal membrane
•	 GO:0006560 	 Proline metabolism
•	 NM_016621 	 Homo sapiens BRAF35/HDAC2 complex (BHC80)
•	 NM_013231 	 Homo sapiens fibronectin leucine-rich transmembrane protein 2 

	 (FLRT2).
•	 GO:0008435	 Anticoagulant activity (AAc)
This cluster provides many features related to PC, especially to cell growth and 

proliferation (STK, BHC80 and AAc). STK is known to regulate PC (Schrantz et al., 2004; 
Clark et al., 2005). BHC80 complex is related to cell cycle regulation, and a spliced form 
of BRAF35, BRAF25, is known to be down regulated in PC (Wang et al., 2002). Also, mu-
tations in histone deacetylase 2 were found to be related to human cancers (Ropero et al., 
2006). The coagulation system has a major role in PC (Kohli et al., 2002). Although also 
related to the coagulation system, some enzymes and enzyme precursors are involved in can-
cer metastasis, especially the plasmin/plasminogen system (Duffy and Duggan, 2004). Plas-
minogen activator inhibitor type 1 has roles in cancer dissemination and is more expressed 
in PC tissue (Chorostowska-Wynimko et al., 2004; Riddick et al., 2005). VDAC1 does not 
have described roles in PC but is known to regulate apoptosis (Abu-Hamad et al., 2006). 
Does it have any regulation role in PC? Other features from this cluster (nuclear membrane, 
actin cytoskeleton) appear to have roles in cellular morphology of tumor cells. There have 
been reports on nuclear membrane alterations in PC (Fischer et al., 2004). Actin cytoskel-
eton reorganization leads to cell differentiation and migration in cancers, and it seems that 
human PC cells have testosterone receptors which when stimulated cause modifications in 
actin cytoskeleton (Kampa et al., 2002). Also, a serine/threonine kinase (first feature of the 
cluster), named PAK6, seems to be correlated to actin reorganization and is expressed dif-
ferently among PC cell lines (Schrantz et al., 2004). Some receptors, such as the PPAR, in 
peroxisomal membrane have shown a relation to PC (Leibowitz and Kantoff, 2003). Other 
features do not show any clear relation to PC (FLRT2 and proline metabolism).

Cluster #3 includes the features:
•	 GO:0006493 	 O-linked glycosylation
•	 GO:0007338 	 Fertilization (sensu Metazoa)
•	 GO:0045595 	 Regulation of cell differentiation
•	 NM_000853 	 Homo sapiens glutathione S-transferase theta 1 (GSTT1)
•	 GO:0012505 	 Endomembrane system
•	 NM_014874 	 Homo sapiens mitofusin 2, nuclear gene encoding mitochondrial
		  protein (MFN2)
•	 GO:0016049 	 Cell growth
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This cluster has interesting features related to PC. Cell growth and regulation of cell 
differentiation (GO:0016049, GO:0045595) are features unarguably related to most kinds 
of human cancers. Some antigens present in PC tumors are glucosylated and have O-linked 
(GO:0006493) and N-linked oligosaccharide chains (Holmes et al., 1996). Also, the tissue 
factor protein (initiator of coagulation) is known to bind to plasminogen with N- and O-
linked oligosaccharide chains (Gonzalez-Gronow et al., 2002). The endomembrane system 
(GO:0012505), composed of intracellular membranous trafficking system, as Golgi, ER, vesi-
cles, etc., was found to have roles in PC as some particular vesicles are found in PC cells, called 
prostasomes (Llorente et al., 2004). Also, the prostate-specific membrane antigen is directed to 
the plasma membrane in appropriate post-Golgi vesicles, with dependence upon N-glycosyla-
tion of the protein and help from microtubules (Christiansen et al., 2005). GSTT1 is known 
to be mutated in some kinds of PC (Dong, 2006; Yang et al., 2006). There was no evidence 
of direct relation of MFN2, a protein known to regulate membrane fusion in mitochondria, to 
PC, but mitochondria are known to be of great importance in PC (Costello et al., 2005). More 
studies are required to prove MFN2 relations to PC. Fertilization (GO:0007338), characterized 
as the union of male and female gametes, is an unusual feature present in this cluster and its 
relations to PC can be extrapolated. Fertilization is probably altered in PC patients, as it has 
been shown that sperm motility and maturation is enhanced in some kinds of PC (Yeung et al., 
1997; Wang et al., 2001).

Cluster #4 includes the features:
•	 GO:0005216 	 Ion channel activity
•	 GO:0006171 	 cAMP biosynthesis
•	 SF002282 	 Cytoskeletal keratin
•	 GO:0007397 	 Histogenesis and organogenesis
All features present in this cluster have connections to PC. Histogenesis and orga-

nogenesis (GO:0007397) are terms related to the formation of tumor tissues and cancers by 
definition. There is a cytokeratin (SF002282) highly expressed in many cancers, including 
PC (Egland et al., 2006). Activities of some ion channels (GO:0005216), such as potassium 
and calcium channels (alpha-types), have been related to PC cell proliferation (Skryma et al., 
1997; Mariot et al., 2002; Van Coppenolle et al., 2004). PC cells initially depend on circulating 
androgens. These hormones activate signal transduction pathways via G protein receptors with 
cAMP production (GO:0006171) via adenylate cyclase. Some hormone agonists and antago-
nists seem to decrease the metastatic progression of PC (Dondi et al., 2006).

Cluster #5 includes the features:
•	 1175_s_at	 Cytochrome P450, family 2, subfamily C, polypeptide 8 (CYP2C8)
•	 GO:0006330 	 Single-stranded DNA binding
•	 GO:0042578 	 Phosphoric ester hydrolase activity
•	 NM_005419 	 Homo sapiens signal transducer and activator of transcription 2113
 		  kDa (STAT2)
•	 NM_018651 	 Homo sapiens zinc finger protein 167 (ZNF167)
Although too general, the single-stranded DNA binding feature (GO:0006330) has a 

member protein with direct roles in PC cell survival and proliferation, as well as in other can-
cers: human telomerase (Folini et al., 2005). The enzyme, phosphodiesterase 4, responsible for 
cAMP breakdown (a phosphoric ester hydrolase activity - GO:0042578) has been shown to be 
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hypomethylated in PC cells (Ho et al., 2006). Some STAT proteins are found to be activated in 
PC, but there is no direct relation for STAT2 (Ni et al., 2002). Is this molecule also involved? 
The other features have no direct evidence of relation to PC (CYP2C8, ZNF167), and more 
specific tests are needed in order to determine their relations to PC.

DISCUSSION

We applied a novel analytical method, model utilization-based clustering or MUTIC, 
to a gene expression dataset pertinent to the genetics of PC. 

The method corroborated previous results (Goertzel et al., 2006) as it produced clus-
ters with high significance, biologically and mathematically. As shown in the qualitative com-
parison section, it was able to stress inter-gene and inter-process interactions that could not be 
identified via standard expression-based clustering analysis.

From the biological analysis of the clusters, 70% of the features from the 5 better quality 
clusters analyzed have some level of relation to PC (confirmed by the literature). The 30% re-
maining features need a more detailed study to confirm their relations to PC. From this set, many 
features have unknown function (e.g., KIAA0226, from cluster 1). With ‘wet lab’ experiments, 
those features could be linked to PC and/or have its function discovered or more detailed.

In conclusion, the results presented here reinforce the potential of this method to aggre-
gate genes and gene categories that are in fact relevant to the biological phenomenon under study. 
MUTIC could also be used as a good tool for biologists to study gene products with still unclear 
functions as well as to help expand and extrapolate the existing biological pathway and ontology 
databases (e.g., KEGG, Reactome, Biocarta, GO, etc.) with the novel gene linkage it produces.
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