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ABSTRACT. Predicting enzyme class from protein structure param-
eters is a challenging problem in protein analysis. We developed a method
to predict enzyme class that combines the strengths of statistical and
data-mining methods. This method has a strong mathematical founda-
tion and is simple to implement, achieving an accuracy of 45%. A com-
parison with the methods found in the literature designed to predict en-
zyme class showed that our method outperforms the existing methods.
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INTRODUCTION

The debate about the relationship between protein structure and function, and how to
infer the latter from the former, has gained momentum (Shrager, 2003). Most methods to clas-
sify a query protein rely on detecting sequence or structural similarity with a functionally anno-
tated protein. Unfortunately, this is not always possible because the number of new proteins
without a sequence or structural homolog grows every year.

For instance, in the Protein Data Bank - PDB (http://www.pdb.org) (Berman et al.,
2000), the number of protein structures with “Unknown Function” annotation is increasing very
fast. According to the PDB Metrics software (http://sms.cbi.cnptia.embrapa.br/SMS/
pdb_metrics), the number of structures with unknown function is rapidly growing with each
newly sequenced genome (Figure 1).

Figure 1. Growth of the number of protein structures with unknown function annotation.
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It is a paradox that despite the fact that we have plenty of structural information about
proteins, we often know little about their function. It should be possible to infer or predict func-
tion based on structural parameters, if structure and function are related in some sense.

Recently, Dobson and Doig (2005) proposed a new approach to predict enzyme class
from protein structure that sheds some light on the relationship between structure and function.
The idea behind their method is to compute structural attributes and assign a protein structure to
one of six different protein classes. In this approach, six protein enzyme classes and their re-
spective members are selected according to enzyme classification (EC) number, from the AS-
TRAL SCOP 1.63 (http://astral.berkeley.edu) (Brenner et al., 2000; Chandonia et al., 2002).
Subsequently, for each structure, a matrix is created, where the rows are assigned to one of the
20 amino acids and the columns correspond to structural attributes. The authors argue that the
attributes selected to describe each protein are deliberately simple and fast to calculate. The
accuracy of their method is achieved by combining the prediction of one-class versus one-class
support vector machine models. In doing so, a subset of parameters is optimized and the model
is capable of making overall assignments of EC number to an accuracy of 35% with the top-
ranked prediction.
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Encouraged by this promising approach, we decided to search structural parameters
available in the STING_DB database that could confirm and possibly improve their results.
STING_DB is a database behind the Diamond STING package (http://www.cbi.
cnptia.embrapa.br/SMS) (Neshich et al., 2003, 2004b, 2005). There are more than 300 physi-
cal-chemical parameters calculated from the protein structure. Many of them are highly corre-
lated and need to be carefully selected to avoid the insertion of undesirable noise in the model.

One of the novelties with our approach is that our parameter selection procedure com-
bines the strengths of statistical and data-mining methods to improve the prediction accuracy.
Another significant difference between our approach and that one proposed by Dobson and
Doig (2005) is that we constructed, for each structure, one matrix in which the rows were
assigned to structural parameters and the columns to residues. The reason for this choice is the
source of the data: Java Protein Dossier - JPD (http://www.cbi.cnptia.embrapa.br/SMS/JPD)
(Neshich et al., 2004a). JPD is one module of Diamond STING. It is an interactive presentation
of important physical-chemical characteristics of the macromolecular structure described in a
PDB file. With a few mouse clicks, the user can access data about chosen parameters, call
other Diamond STING modules, refine the search for a specific characteristic, or, what is
more important for our experiments, export all data to a CSV-format file, i.e., a flat file sepa-
rated by commas.

Preprocessing the CSV files is necessary, because the number of residues is not iden-
tical for every protein in the set, which means that the matrices have different dimensions. By
interpreting the rows as a one-dimensional signal, we perform a convenient mathematical trans-
formation and truncate the expansion coefficients to a given threshold. The choice of the num-
ber of coefficients to keep was a trade off between the model’s simplicity and its performance.
The model’s simplicity was inversely proportional to the number of coefficients retained; on the
other hand, the model’s performance was directly proportional to them. The experiments showed
that 40 coefficients yielded the best results.

Finally, using the Naive Bayesian classifier, the model was built. We attained, on aver-
age, an overall assignment of EC number to an accuracy of 45%, which outperforms the results
obtained by Dobson and Doig (2005).

MATERIAL AND METHODS

Data set

Although the ASTRAL SCOP release available at the time was already 1.69, we de-
cided to keep the same set of protein structures used by Dobson and Doig to compare the
methods. In doing so, we put both methods under the same conditions. Otherwise, it would be
difficult to assess the real contribution of our method, because the improved outcomes could be
simply a response to a better data set.

Parameter selection

Choosing which attributes to keep and which to discard is not a trivial problem in en-
zyme prediction. The full set of attributes used to describe each protein may not be optimal. In
general, certain attributes are noisy and compromise the accuracy of enzyme prediction. The



L.C. Borro et al. 196

Genetics and Molecular Research 5 (1): 193-202 (2006) www.funpecrp.com.br

challenge here is to remove the noisy attributes from the database describing the proteins,
without losing the usefulness of the data.

Several methods have been proposed for parameter selection, ranging from different
feature selection methods to multidimensional scaling. The feature selection methods are often
performed according to the nature of the data, and therefore they are not generally applicable to
all kinds of data analyses (Langley, 1994; Blum and Langley, 1997). The multidimensional scal-
ing methods, on the other hand, have been used in several diverse fields (e.g., social sciences,
market research, and physics) to analyze subjective evaluations of pairwise similarities of enti-
ties (Young, 1987).

Another alternative for parameter selection is to look for methods that rely on identify-
ing potentially discriminating attributes by using some statistical measures of the information
content of attributes, such as their correlation coefficients. The intuition behind these methods is
that two well-correlated attributes contain much the same information, and therefore one of
them could be eliminated from the analysis. In doing so, we would reduce some noise in the
data, which would improve the prediction accuracy.

Our approach to improve prediction accuracy consists of three major steps. We refer to
these steps as attribute pairwise correlation, redundancy identification and noise removal, and
we describe them as follows:

Attribute pairwise correlation

In this step, we compute the correlation matrix between the protein parameters subject
to prediction, for each PDB file. The most significant parameters can be seen in Table 1. The
correlation matrix will identify pairs of parameters that are well correlated. In particular, we set
our threshold (correlation coefficient) to 0.8, i.e., attribute pairs with a correlation coefficient
equal to or greater than 0.8 contain one candidate to be removed from the data since the
presence of both is not necessary. We could also slide this threshold to take values either higher
or lower than 0.8.

Redundancy identification

After identifying pairs of attributes that are well correlated in each PDB file, we tried to
identify whether these attributes were also well correlated in the entire database. To accomplish
this, we used a data-mining task called association (Han and Kamber, 2001). The goal of this
data-mining task is to find interesting associations and/or correlation relationships among items
in a large set of data. In our approach, the idea is to identify groups of frequent attribute pairs
that are well correlated in the entire database. A pair of attributes is said to be frequent if it
appears in at least a given percentage σ (called support) of all PDB files. In our experiments,
we set the support threshold (σ) to 60%, which is very high for data-mining applications.

Redundancy removal

Once the redundancy was identified in the previous step, we removed some redundant
attributes from the data (Table 2). The removal process took into account the attribute pairs
whose frequencies in the database met the support threshold (σ = 60%). For each pair of
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Table 1. Representative attributes from the STING_DB database.

STING_DB parameters

1 Cross Presence Order@ca;
2 Cross Presence Order@cb;
3 Cross Presence Order@lha;
4 Cross Link Order@ca;
5 Cross Link Order@cb;
6 Cross Link Order@lha;
7 Contacts Energy (Internal);
8 Unused Contacts Energy;
9 Surface Accessibility Complex;

10 Surface Accessibility Isolation;
11 Ep@ca;
12 Ep@lha;
13 Ep Average;
14 Ep@surface;
15 Dist. N-Terminal;
16 Dist. C-Terminal;
17 Dist. Center of Gravity;
18 Hydrophobicity IKD;
19 Hydrophobicity IR

Table 2. Parameters after selection. High correlated attributes were removed.

STING_DB parameters

1 Cross Presence Order@ca;
2 Cross Link Order@ca;
3 Contacts Energy (Internal);
4 Unused Contacts Energy;
5 Surface Accessibility Isolation;
6 Ep@ca;
7 Ep@lha;
8 Ep Average;
9 Ep@surface;

10 Dist. Center of Gravity;
11 Hydrophobicity IKD

attributes that were well correlated in the database, we randomly removed one attribute for the
purpose of reducing the noise in the data. In the end, the remaining attributes were subject to
prediction. However, we applied another transformation of the data before the prediction phase
to put all the attributes under the same condition.

Preprocessing the data

After the parameter selection phase, every protein structure was represented by a
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rectangular matrix (number of parameters versus number of residues). The problem with this
representation is that the number of residues varies from protein to protein, which results in
matrices with different dimensions.

To build the method, all the matrices should have the same number of rows and col-
umns. To accomplish that, every matrix row was seen as a signal, and we borrowed an idea
from the Signal Processing field to better represent it.

After some experimentation, we decided to perform the discrete cosine transform -
DCT (Ahmed et al., 1974) in every row (signal), and truncate the number of expansion coeffi-
cients to 40. The DCT was chosen for two main reasons: 1) it is an orthonormal transformation
that preserves the norms and angles of the vectors; and 2) it is a real transformation, instead of
a complex transformation like discrete Fourier transform. We found that 40 DCT coefficients
are enough to get a good representation of the representative signal (parameter) and maintain
the general shape of the original signal (Figure 2).

Figure 2. The transformed signal retains the general shape of the original signal. As expected, the high frequencies are
lost.

Building the model

Predictive modeling

The goal of predictive modeling is to predict some attributes in a database based on
other attributes. The target attribute is called class, i.e., the dependent variable in statistics
terminology. If the attribute being predicted is a numeric variable (e.g., number of contacts), the
prediction becomes a regression problem. In contrast, if the class label attribute is cat-
egorical, the task at hand is called classification. In both cases, a set of data is taken as
input, and a model (a pattern or a set of patterns) is generated. This model can be used to
predict values of the class for new data. For instance, given a data set, only a part of it is
typically used to generate a predictive model. This part is referred to as the training data set.
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The individual tuples making up the training data set are referred to as training samples and are
randomly selected from the sample population. Since the class label of each training sample is
provided, this step is known as supervised learning. The remaining part, which is called the
testing set, is reserved for evaluating the predictive performance of the learned model. The
testing set is used to estimate the performance of the model on new (unseen data), i.e., to
estimate the validity of the patterns on new data. Classification and regression have numerous
applications, including credit approval, bioinformatics, medical diagnosis, and selective market-
ing, among others.

Bayesian classification

Bayesian classifiers are statistical classifiers that can predict class membership prob-
abilities, such as the probability that a given sample belongs to a particular class. Bayesian
classification is based on the Bayes’ theorem (Feller, 1971). Bayes’ theorem is a result in prob-
ability theory, which gives the conditional probability distribution of a random variable A, given:
1) information about another variable B in terms of the conditional probability distribution of B
given A, and 2) the marginal probability distribution of A alone.

In particular, Naive Bayesian classifiers assume that the effect of an attribute value on
a given class is independent of the values of the other attributes. This assumption is called class
conditional independence. It is made to simplify the computations involved and, in this sense, is
considered “naive.” In practice, dependencies can exist between variables; however, when the
assumption holds true, then the Naive Bayesian classifier is the most accurate in comparison
with other classifiers (Han and Kamber, 2001).

We adopted the Naive Bayesian classifier to predict enzyme class from protein struc-
ture. The adoption of this classifier was influenced by the following: 1) it is one of the most
effective and efficient classification algorithms in the literature (Zhang and Su, 2004); 2) it is
simple to implement and use; 3) it gives a better test set accuracy than any other known method,
including backpropagation and C4.5 decision trees (Elkan, 1997), and most importantly, 4) it
exploits the most from our method for parameter selection, which relies on removing noise from
well-correlated variables that are dependent.

We used the implementation of the Naive Bayesian classifier available at Weka, ver-
sion 3.4.4 (http://www.cs.waikato.ac.nz/ml/weka) (Witten and Frank, 2005). Weka is a soft-
ware environment for knowledge analysis composed of a collection of machine learning algo-
rithms for data-mining tasks. Weka contains tools for data preprocessing, classification, regres-
sion, clustering, association rules, and visualization. It is an open-source software issued under
the GNU General Public License.

RESULTS

We considered the ASTRAL SCOP data set, release 1.63 in our experiments. The
number of members per class is shown in Table 3. There were 492 protein structures in six
different classes.

The original number of protein structures was 498. However, six protein structures
(1hlr, 1uox, 1gms, 1htq, 1bir, 1mu7) were not found in STING_DB, and therefore they
were excluded from our data set. The classes had different numbers of members. For
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example, the Hydrolase class had 158 members, while Ligase had only 19. To build the Baye-
sian model, it is necessary to balance the class element numbers; otherwise, the outcomes could
be biased toward the classes with more members. One strategy to deal with this problem
is to produce a random subsample of the data set using sampling with replacement (Breiman,
1996). We applied two restrictions: preserve the total number of elements and generate a
uniformly distributed subsample. In doing so, the number of elements in the classes is
balanced.

It has been demonstrated (Goutte, 1997) that, for a small data set, cross-validation is
markedly superior to the split-sample technique to validate models. In k-fold cross-validation,
the data are divided into k subsets of approximately equal size. The model is then trained k
times, each time leaving out one of the subsets from training, but using only the omitted subset to
validate the model. We used a 10-fold cross-validation test.

The global results are summarized in Table 4. We found that 45.3% of 492 instances
were correctly classified, which is a good accuracy.

Table 3. The six main classes of enzyme and their corresponding instances for each class. The elements were culled
from Astral 1.63.

The actual numbers of members are in parentheses.

Enzyme classes Number of members

Oxidoreductase 79 (77)
Transferase 128 (127)
Hydrolase 160 (158)
Lyase 60 (60)
Isomerase 51 (51)
Ligase 20 (19)

Table 4. Global results of the classification method applied to six enzyme classes.

Correctly classified instances 223 45.3%
Incorrectly classified instances 269 54.7%
Total number of instances 492
Kappa statistic 0.34
Mean absolute error 0.18

The detailed results by class are shown in Table 5. The first column refers to the six
classes that were considered in the predictions. True-positives are the number of instances
correctly classified in a given class divided by the number of instances in that class, while
the false-positive rate is equal to 1 minus the recall of the test, where recall corresponds to
the number of true-positives divided by the sum of true-positives and false-negatives. Pre-
cision is the proportion of true-positives in a given class divided by the total number of
instances classified in that class. F-measure is a harmonic measure that gets the most of
both precision and recall, and it is defined as: F-measure = 2* precision* recall/(precision +
recall).
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DISCUSSION

We proposed a method for predicting EC, which combines the strengths of statistical
and data-mining methods. We showed that our method has a strong mathematical foundation
and is simple to implement. Our method achieved an accuracy of 45.3% and outperformed the
existing methods available in the literature designed to predict enzyme class.

Our research builds on the work of Dobson and Doig (2005) to predict protein function
based on structural parameters without using alignment-based methods.  The Dobson and Doig’s
method uses a one versus one support vector machine to assign enzyme class to the top ranked
among all the 15 prediction sub-problems. In other words, their approach compares the six
protein classes, two at a time, and considers the top rank among them. This is quite different
from what we have proposed. Our method is all versus all Bayesian classifier, which makes the
problem much more difficult to handle. For instance, in our approach the expected probability of
a protein being classified correctly is only 16.7%. Therefore, to reach an accuracy of 45.3%,
we purposely used the foundation of predictive modeling to improve the prediction of enzyme
class from protein structure parameters.

We did not use the simplest parameters to be computed for our model. Rather, we
considered the most representative parameters available at STING_DB. One class may out-
perform the other in terms of accuracy, such as Ligase (Table 5). The main reason is that, in
general, the attributes do not discriminate all the classes equally.

The main contributions of the present study can be summarized as follows:

• A method to remove noisy attributes from the database describing the proteins, with-
out losing the usefulness of the data;

• Mapping of attributes into a frequency space to remove high frequencies and repre-
sent all the PDB files in terms of matrices with the same number of rows and col-
umns;

• We investigated the resampling with replacement technique to improve the classifica-
tion accuracy. In doing so, we achieved an accuracy of 45.3%, which surpasses the
results obtained by the previous method proposed in the literature.

Currently, we are investigating other classification methods to improve the accuracy of
protein prediction, which warrants further exploration. In particular, we are comparing the Na-

Table 5. Detailed results for each enzyme class.

Class TP rate FP rate Precision Recall F-measure

Oxidoreductase 0.240 0.103 0.295 0.240 0.265
Transferase 0.385 0.090 0.493 0.385 0.432
Hydrolase 0.691 0.345 0.283 0.691 0.401
Lyase 0.420 0.078 0.515 0.420 0.463
Isomerase 0.360 0.025 0.756 0.360 0.488
Ligase 0.628 0.014 0.891 0.628 0.737

TP = true-positive; FP = false-positive.
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ive Bayesian classifier against classification methods based on decision trees and multilayer
neural network.
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