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ABSTRACT. Essential genes are those genes that are needed by
organisms at any time and under any conditions. It is very important
for us to identify essential genes from bacterial genomes because of
their vital role in synthetic biology and biomedical practices. In this
paper, we developed a support vector machine (SVM)-based method to
predict essential genes of bacterial genomes using only compositional
features. These features are all derived from the primary sequences,
i.e., nucleotide sequences and protein sequences. After training on the
multiple samplings of the labeled (essential or not essential) features
using a library for SVM, we obtained an average area under the ROC
curve (AUC) of about 0.82 in a 5-fold cross-validation for Escherichia
coli and about 0.74 for Mycoplasma pulmonis. We further evaluated
the performance of the method proposed using the dataset consisting
of 16 bacterial genomes, and an average AUC of 0.76 was achieved.
Based on this training dataset, a model for essential gene prediction was
established. Another two independent genomes, Shewanella oneidensis
RW1 and Salmonella enterica serovar Typhimurium SL1344 were
used to evalutate the model. Results showed that the AUC sores were
0.77 and 0.81, respectively. For the convenience of the vast majority
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of experimental scientists, a web server has been constructed, which is
freely available at http://cefg.uestc.edu.cn:9999/egp.
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INTRODUCTION

These days, studies on essential genes are becoming increasingly important with the
emergence and development of synthetic biology. A gene is considered to be essential only
if it is essential under any growth conditions. Under this definition, genes that are needed for
some specific conditions such as aerobic or anaerobic conditions (Sassetti et al., 2001) should
be considered non-essential genes. Usually, essential genes are identified in the most optimal
conditions, where the minimal functional gene set would be expected. Essential genes are
crucial for several reasons. First, essential genes are perfect promising targets of drugs against
pathogenic bacteria (Judson and Mekalanos, 2000; Juhas et al., 2012). Second, they are the
foundation for revealing the minimal gene set for living organisms, and this is very important
in synthetic biology (Juhas et al. 2011). Third, this kind of genes is important for understand-
ing the origin of life and evolutionary relationships among species (Jordan et al., 2002).

Several experimental methods can be used to identify essential genes of bacteria, such
as systematic random mutation, RNA interference, single gene knockout, conditional knock-
out, and transposon mutagenesis (Christen et al., 2011). Nevertheless, all of these are labori-
ous, time consuming, and costly processes. Therefore, to date, the essential genes of less than
20 among thousands of sequenced bacterial genomes have been systematically experimentally
identified. These data have been carefully collected and combined into databases (Zhang and
Lin, 2009; Chen et al., 2012), greatly facilitating related research. With more research groups
putting efforts into the systematic identification of essential genes, information about the es-
sential genes of more bacterial strains will be available in the coming days. However, it could
still not satisfy the great desire to identify essential genes in most bacteria with medical or
industrial importance. Besides, some intrinsic complications exist in the experimental ways.
When considering much more uncultured microorganisms (Chitsaz et al., 2011), the experi-
mental methods for essential gene identification would further show its limitation (Acenico
and Lemke, 2009; Holman et al., 2009). Considering the importance of essential genes and
the limitation of experimental methods, predicting essential genes in silico is of paramount
importance.

In 2005, Chen and Xu predicted protein dispensability in Saccharomyces cerevisiae
using machine learning methods for the first time (Chen and Xu, 2005). Then, several bio-
informatic methods became available for essential gene prediction. Most of these utilized
homology information between the genes whose essentialities need to be identified and those
genes whose essentialities already have been experimentally identified (Guo et al., 2010; Lin
and Zhang, 2011). Given a threshold, most essential genes can be predicted through basic lo-
cal alignment search tool analysis of the target genes with the essential gene database (Juhas
et al., 2009). Some authors have used this principle to predict potential drug targets (Roemer
et al., 2003; Sakharkar et al., 2004; Chong et al., 2006; Doyle et al., 2010). Meanwhile, other
researchers used protein-protein interaction networks or genetic interaction networks to iden-
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tify essential genes (del Rio et al., 2009; Dolye et al., 2010; Plaimas et al., 2010). All of these
techniques require prior experimental information like gene expression levels or protein in-
teraction information, which is only available in a limited number of bacterial species. Using
only homology information, some species-specific genes may be classified into the wrong
class (Deng et al., 2011b), and it takes a long time to search for the homology. Combining all
of the features mentioned above to predict essential genes was also an important strategy for
some methods (Gustafson et al., 2006; Roberts et al., 2007; Acenico and Lemke, 2009; Deng
et al., 2011a; Lin and Zhang, 2011). If a query essential gene has no homologs in public data-
bases and no prior experimental information, it is impossible to predict its essentiality. A more
promising way is to use sequence-derived information to predict essential genes. Sequence
composition has already been extensively used to predict other types of genes. The use of se-
quence compositional information could provide a good alternative in bacterial essential gene
prediction because it is economic, fast, and possibly accurate.

Here we attempted to predict essential genes only using parameters derived from the
primary sequences. By combining 5 types of sequence compositional features, we obtained
an average area under the ROC curve (AUC) that was above 0.9 in self-tests and above 0.7
in 5-fold cross-validation tests in both Escherichia coli and Mycoplasma pulmonis. A web
server was constructed to facilitate the identification of essential genes in complete bacterial
genomes or individual sequences. This study will shed light on essential gene prediction in
bacteria and other life domains.

MATERIAL AND METHODS
Essential gene dataset and genome sequences

The essential gene datasets were downloaded from the database of essential genes
(DEG) (http://tubic.tju.edu.cn/deg/) (version 6.0). DEG is a database of essential genes that
collects the essential genes identified by high-throughput experiments in prokaryotes and eu-
karyotes (Zhang and Lin, 2009). Genome sequences and annotation information were down-
loaded from the National Center for Biotechnology Information (NCBI) RefSeq database
(ftp://ftp.ncbi.nih.gov/genome) in August 2010. Two strains of Escherichia coli MG1655 and
Mycoplasma pulmonis UAB CTIP were analyzed. Particularly, the essential genes of E. coli
MG1655 were obtained from the profiling of E. coli chromosome (PEC) database (http:/
www.shigen.nig.ac.jp/ecoli/pec/index.jsp) because there were 2 very different datasets for
the same strain in the DEG. The gene ID from essential gene databases (DEG or PEC) was
mapped to a sequence by comparing it with the NCBI RefSeq annotation. Some genes that do
not have counterparts in the RefSeq annotation were removed. The information of 16 bacterial
strains is listed in Table 1.

Sequence compositional features

All features are generated from primary sequences (gene or protein sequences). These
features contain amino acid usage (the frequencies of 20 amino acids in every gene, 20 fea-
tures), codon usage (the frequencies of codons in every gene, 64 features), nucleotide usage of
3 codon positions (the frequencies of 4 nucleotides at 3 codon positions of every gene, 4 x 3
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= 12 features), di-nucleotide usage (the frequencies of 2-tuple nucleotide usage of 2 adjacent
codons in 3 codon positions of every gene, 4 x 4 x 3 = 48 features), and CodonW features
[features derived from the software CodonW (http://codonw.sourceforge.net/), i.e., G3s, T3s,
C3s, A3s, CAI, CBI, Fop, Nc, GC, GC3s, L_sym, L_aa, Gravy, Aromo, please refer to the
software homepage for detailed meanings of these abbreviations, 14 features]. The perfor-
mance of these 5 types of fundamental features was investigated independently and jointly
(all 158 features).

Table 1. Detailed information of 16 bacterial strains.

Organism Accession No.  Annotated gene No. No. of essential genes Percentage of essential
genes (%)
Acinetobacter baylyi ADP1 NC_005966 3307 498 15.1
Bacillus subtilis 168 NC_000964 4176 221 53
Escherichia coli MG1655 NC_000913 4145 296 7.1
Francisella novicida U112 NC_008601 1719 390 22.7
Haemophilus influenzae RD HW20 NC 000907 1657 642 38.7
Helicobacter pylori 26695 NC_000915 1573 322 20.5
Mycobacterium tuberculosis H37TRv NC_000962 3988 614 154
Mycoplasma genitalium G37 NC 000908 475 378 79.6
Mycoplasma pulmonis UAB CTIP NC_002771 782 309 39.5
Pseudomonas aeruginosa UCBPP PA14 ~ NC 008463 5892 335 6.0
Salmonella enterica serovar Typhi NC 004631 4314 353 8.2
Salmonella typhimurium LT2 NC_003197 4423 229 52
Staphylococcus aureus N315 NC_007795 2891 351 12.1
Staphylococcus aureus NCTC 8325 NC 002745 2583 302 11.7
Streptococcus pneumoniae NC_003028 2105 111 53
Vibrio cholerae N16961* NC_002505 2741 565 20.6

*Only essential genes located one chromosome I was used for Vibrio cholerae N16961.

Support vector machine (SVM)

SVM is one of the most commonly supervised learning methods for classification
and regression analysis. SVM can be implemented with the software toolbox LibSVM
3.1, which was written by Lin (Chang and Lin, 2011). It is open sourced and can be freely
downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvm. Usually, 4 kinds of kernel
functions, i.e., linear, polynomial, sigmoid, and radial basis function (RBF), are available
to perform training and predicting. After carefully examining these kernel functions with
various parameters, we found that the kernel function RBF achieved the highest accuracy.
AUC was used to assess the trained model. Furthermore, sensitivity and specificity were
also calculated.

CD-HIT

It is well known that the benchmark dataset with high sequence similarity always
contains redundancy, which can overestimate the performance and reduce the generalization
ability of a proposed model. CD-HIT is a widely used program for removing the redundant
(similar) sequences (Li and Godzik, 2006). It can be freely downloaded from http://weizhong-
lab.ucsd.edu/cd-hit/. In this study, we used CD-HIT-EST with the default parameters (i.e., C =
0.95, N = 8) to eliminate redundant sequences.
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RESULTS

Prediction of essential genes in E. coli

E. coli MG1655 has 302 essential genes and 3843 non-essential genes according to
the PEC annotation (all other genes that are annotated in GenBank are considered non-essen-
tial). The difference between the number of essential and non-essential genes is so great that
it is very hard for any machine learning algorithm to obtain a balanced result (Provost, 2000).
There are two common methods to solve the problem. One is over-sampling the minor sample,
and the other is under-sampling the major sample. Here, the under-sampling strategy was ad-
opted because a lot of time is required by SVM for over-sampling a large dataset. All essential
genes were taken as the positive dataset. Non-essential genes were randomly under-sampled
to the same size as the positive dataset. In total, 80 random samplings were performed for E.
coli. After obtaining the negative and positive dataset, we retrieved the features of each gene
as described in the Methods section. Then, the performance of each group of features was
estimated by SVM. A 5-fold cross-validation and self-test were used to evaluate the model’s
performance. For each randomly sampled dataset, the AUCs of the self-test and 5-fold cross-
validation were obtained. The average AUCs for 80 replicates were listed in Table 2.

Table 2. Results of self-test and 5-fold cross validation in Escherichia coli MG1655.

Features Self-test 5xCV
AUC Sensitivity Specificity AUC
Nucleotide 0.8484 0.7878 0.7387 0.7757
Codon 0.8872 0.8048 0.8098 0.7665
CodonW 0.8524 0.7352 0.8026 0.8068
AA 0.8712 0.8045 0.7838 0.7741
Dinucleotide 0.8914 0.8323 0.7959 0.7689
Combine 0.9595 0.9093 0.8996 0.8168

Prediction of essential genes in M. pulmonis

The process of essential gene predication in M. pulmonis is similar to that of E. coli.
According to DEG, M. pulmonis has 309 essential genes and 473 non-essential genes. The
same under-sampling strategy was used to obtain balanced positive and negative datasets. A
total of 20 random samplings were used to obtain the training dataset. The average AUCs of
20 datasets were calculated and listed in Table 3.

Table 3. Results of self-test and 5-fold cross validation in Mycoplasma pulmonis.

Features Self-test 5xCV

AUC Sensitivity Specificity AUC
Nucleotide 0.8850 0.8528 0.7722 0.7016
Codon 0.7462 0.8095 0.5311 0.6931
CodonW 0.8515 0.8116 0.7315 0.7186
AA 0.8865 0.8102 0.8102 0.7230
Dinucleotide 0.8693 0.8225 0.7112 0.7125
Combine 0.9532 0.9194 0.8844 0.7371
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Prediction of essential genes in all 16 genomes

According to DEG, there are a total of 7215 essential genes and 47,846 non-essential
genes (genes that are annotated in GenBank but not in DEG are considered to be non-essential
genes here). After using CD-HIT on the essential and non-essential gene dataset with the
default parameters (¢ = 0.95, N = 8), the number of essential genes was reduced to 5985,
and the number of non-essential genes was reduced to 35,492. The under-sampling strategy
was also used to deal with the unbalanced dataset. We randomly sampled the same number
of non-essential genes as essential genes to construct the negative datasets. Because of the
computation limitations and to save time, a total of 6 random samples were used. A predictive
model was generated, and a 5-fold cross-validation was used to assess the model. The 5-fold
cross-validation results were listed in Table 4.

Table 4. Results of self-test and 5-fold cross validation on the combined dataset of 16 bacterial genomes.

Features Self-test 5xCV
AUC Sensitivity Specificity AUC (5 X)
Nucleotide 0.7407 0.6553 0.7021 0.6968
Codon 0.8379 0.7263 0.7976 0.7575
CodonW 0.7549 0.6470 0.7198 0.7175
AA 0.7863 0.6913 0.7367 0.7009
Dinucleotide 0.7862 0.7029 0.7296 0.7023
Combine 0.8345 0.7263 0.7880 0.7583

Web server for predicting essential genes

Based on the model that was built on all 16 bacterial genomes, we constructed a web
server for bacteria essential gene prediction. Six different models were combined by averaging
the probabilities of the prediction. The server is available at http://cefg.uestc.edu.cn:9999/egp.
Only nucleotide sequences of genes are needed to make a prediction. Users are required to
either upload a sequence file or copy and paste the query gene sequence into the text box. The
input sequence should be in FASTA format. After clicking on the ”Submit” button, the user
may check the results on the jumping window. If an e-mail address is provided, an attachment
containing the predicted results will be sent to it.

We used the server to predict essential genes in 2 other independent species; another
independent species Shewanella oneidensis, whose essentiality data were collected from DEG
version 10.0 just recently (1), has been used to test the performance of EGP. Running result
shows that that the AUC scores were 0.77. The strain Salmonella enterica serovar Typhimuri-
um SL1344 was also used as an independent test set and it attains the AUC score of 0.81. In
fact, the former independent testing species belongs to the same class with some of the training
species, whereas it does not belong to the same order with any of them. The latter independent
testing genome belongs to the same species with some of the training species. So it is thought
that the EGP tool may be applicable to each bacterial genome that belongs to the same family
with one of the 16 training strains. When predicting the essentiality of an anonymous single
gene, the user is needed to only provide its DNA sequence in FASTA format. We suggest that
our other web server, Geptop (http://cefg.uestc.edu.cn/geptop), is used when the complete ge-
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nome has been sequenced (Wei et al., 2013). Except EGP and Geptop, there are not any other
web servers to predict essentiality.

DISCUSSION

In this study, we investigated the performance of 5 types of compositional features
for predicting essential genes using SVM. Five-fold cross-validation results exhibited that the
AUCs achieved by these features were all greater than 0.7, demonstrating that it is feasible to
use primary sequences to predict essential genes. The combination of these features achieved
the highest AUC in all the 3 different datasets. These features are not linearly independent.
Using principal component analysis, the first 80 components accumulated 99% of the variants
from the original 158 features; however, when only the first 80 components were selected as
features, the AUC of the 5-fold cross-validation declined significantly.

In 2006, Seringhaus et al. (2006) combined 7 different machine learning methods to
predict essential genes in fungal genomes using 14 sequence compositional features. Some of
the predicted essential genes were chosen and validated by experiments. That was the first re-
port in which only compositional features were used in essential gene prediction, but the accu-
racy was not satisfactory. Here, we systematically evaluated 5 different types of basic compo-
sitional features. We found that the AUCs in the 5-fold cross-validation were encouraging and
exciting. We also considered pseudo amino acid composition, which includes sequence-order
information besides composition (Chou, 2001) as features. However, the result was not signifi-
cantly improved over the method that we described above when we trained and tested them.

Many other features such as genetic interaction, protein-protein interaction, metabolic
networks and gene expression patterns can be used in the prediction (del Rio et al., 2009;
Hwang et al., 2009; Manimaran et al., 2009; Wang et al., 2012). Our results were comparable
with or even better than these features. For example, when adopting 3 types of features derived
from sequence, i.e., phyletic retention, strand type, and open reading frame length, Hwang
obtained a precision of 82.6% and a recall of 74.3% in the E. coli K12 genome based on a
10-fold cross-validation. In our method, the precision is 74.6% and the recall is 66.8% for E.
coli K12 based on a 10-fold cross validation. When using only topological properties of the
protein interaction network, a precision of 58.4% and a recall of 46.4% were obtained for the
same strain. Therefore our method is comparative with published methods. On the other hand,
these experimental features are unavailable for most bacterial species. In the future, combin-
ing these experimental features with the features derived from sequence composition will
improve the predictive model (Roberts et al., 2007; Deng et al., 2011a).

Although many features are associated with essential genes, the intrinsic complication
of life makes the accurate identification of essential genes in all bacterial species difficult. For
example, current experimental techniques can only identify essential genes independently in
certain environments. However, when considering 2 or more non-essential genes that can be
disrupted separately, disrupting them at the same time may be lethal to the bacteria. This may
partly explain the existence of different essential gene datasets that are identified by different
research groups, as in the case of E. coli MG1655.

This study shed light on essential gene prediction. It employs only sequence-based
information without other experimental information. However, just due to few information is
required, it is applicable only to some certain phylogenetic lineages. Be cautious to use it when
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your input gene belongs to the host that do not be included in the same family with any of the
reference species, which have been used in the training set of EGP. A web server for predicting
essential genes was constructed for convenience and its practical purposes.
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