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ABSTRACT. Among different classes of molecular markers, expressed
sequence tags (ESTs) are a new resource for developing simple
sequence repeat (SSR) functional markers for genotyping and genetic
mapping in F, hybrid populations of Vitis vinifera L. Recently, because
of the availability of an enormous amount of data for ESTs in the public
domain, the emphasis has shifted from genomic SSRs to EST-SSRs,
which belong to transcribed regions of the genome and may have a role
in gene expression or function. The objective of this study was to assess
the polymorphisms among 94 F hybrids from “Early Rose” and “Red
Globe” using 25 EST-derived and 25 non-EST SSR markers. A total
collection of 362,375 grape ESTs that were retrieved from the National
Center for Biotechnology Information (NCBI) and 2522 EST-SSR
sequences were identified. From them, 205 primer pairs were randomly
selected, including 176 pairs that were EST-derived and 29 non-EST
SSR primer pairs, for polymerase chain reaction amplification. A total
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of 131 alleles were amplified using 50 pairs of primers; 78 alleles were
amplified using EST-derived SSR primers and 53 were from non-EST
SSR primers. At most, 6 and 5 alleles were amplified by EST-derived
and non-EST SSR primers, respectively. The EST-derived SSR markers
showed a maximum polymorphic information content (PIC) value of
1 and a minimum of 0.33 while non-EST SSR markers had maximum
and minimum PIC values of 1 and 0.25, respectively. The average PIC
value was 0.56 for EST-derived SSR markers and 0.45 for non-EST
SSR markers.

Key words: Grapevine; non-EST SSR; Polymorphism;
Expressed sequence tag (EST)-derived simple sequence repeat (SSR)

INTRODUCTION

Among different classes of molecular markers, simple sequence repeats (SSRs) are
the most suitable for studying polymorphisms because of their ease in handling, reproduc-
ibility, multiallelic nature, co-dominant inheritance, relative abundance, and genome-wide
coverage (Powell et al., 1996). Recently, because of the availability of an enormous amount of
data for expressed sequence tags (ESTs) in the public domain, the emphasis has shifted from
genomic SSRs to EST-SSRs, which belong to transcribed regions of the genome and may have
arole in gene expression or function.

EST projects have been initiated for numerous plant and animal species, generating
large amounts of sequence information that can be used for gene discovery, functional genetic
studies, and marker development (Pashley et al., 2006). ESTs were used for the first time in
1991 by Adams et al. as a means of gene discovery in the human brain. Since then, ESTs have
played an important role in functional genomic research for the discovery of new functional
genes other than whole-genome approaches (Chen et al., 2005; Yamada-Akiyama et al., 2009;
Zhao et al., 2009).

The availability of ESTs greatly accelerates the systematic identification of SSRs and
corresponding marker development based on computational approaches (Varshney et al., 2002;
Gao et al., 2003; Thiel et al., 2003; Chen et al., 2006). EST-derived SSRs have been well docu-
mented in some plant species including Arabidopsis (Depeiges et al., 1995), sugarcane (Cor-
deiro et al., 2001), cereal species (Kantety et al., 2002), cacao (Lima et al., 2008), and rubber
tree (Feng et al., 2009). Recently, many EST libraries of a wide range of plant species have
been constructed for genes involved in plant growth and differentiation (Matsuoka et al., 2004),
biochemical pathways (Remy and Michnick, 2004; Urbanczyk-Wochniak and Sumner, 2007),
secondary metabolism (Park et al., 2004), and responses to environmental stresses and pathogen
attack (Sugui and Deising, 2002). By July 1, 2012, a total of 73,360,923 ESTs have been sub-
mitted to the National Center for Biotechnology Information (NCBI) from 2430 species. EST
submission to NCBI increases considerably at a monthly rate of approximately one million hits.

EST-SSRs are highly transferable for detecting the gene-rich areas within the genome.
We can utilize these markers to evaluate marker transferability across taxa and conduct com-
parative mapping and gene functional diversity analysis in addition to genotyping. The func-
tional EST-SSR markers should be even more useful for developing a linkage map or tagging a
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viticulturally important trait. In addition, the polymorphic EST-SSR markers are much needed
for genotyping, cultivar identification, and the development of a linkage map for Vitis species.

Research on fruit crop EST has also been given increasing attention (Zhao et al., 2008;
Lietal., 2010), with the importance of grapevine in plant genomics being well reflected from
grapevine EST projects that were initiated in different countries worldwide. In 2001, there
were fewer than 400 ESTs from V. vinifera L. that were deposited in GenBank (Moser et al.,
2005), but this number rose rapidly to 195,434 by July 1, 2006 (Peng et al., 2007) and 446,664
by July 1, 2012. Establishing sets of ESTs from different cultivars is important for molecular
genetics and genomics because some nucleotide variations exist among cultivars.

Here, we reported the identification and characterization of 2522 unique grape EST-
SSRs that were derived from a total of 362,375 grape ESTs. With this background knowledge,
the objective of this study was to assess the polymorphisms among 94 F hybrids from crosses
between “Early Rose” and “Red Globe” using 25 EST-derived and 25 non-EST SSR markers.

MATERIAL AND METHODS
Plant material

For polymerase chain reaction (PCR) amplification and polymorphism analysis, 2 parents
with 94 F, population (Early Rose and Red Globe) were collected from the Zhengzhou Fruit Re-
search Institute, Chinese Academy of Agriculture Science, and which were used as the mapping
population. Young fresh leaf samples were collected and frozen in liquid nitrogen and samples were
stored at -40°C until use. Genomic DNA was extracted from young fresh leaves of these grape culti-
vars using a modified cetyltrimethylammonium bromide (CTAB) protocol (Qu et al., 1996).

Grape EST retrieval from NCBI and analysis

All grape EST that were available in the NCBI database on November 21, 2010 were
retrieved. Among the total 362,375 ESTs, 2522 SSRs were identified from V. vinifera L. For
the vector sequences, low-quality and redundant sequences were rejected with cTrans (http:/
www.njau.edu.cn/down/ctrans/, Xu et al., 2007) and cap3 (http://seq.cs.iastate.edu/cap3.html,
Huang and Madan, 1999) softwares.

Computer programs for mining SSRs from ESTs

A Perl script program named Microsatellite (MISA) that was developed by Thiel et
al., 2003 (http://pgrc.ipk-gatersleben.de/misa) was used to identify EST-SSRs. The SSRs are
between 2 and 6 nucleotides in size. The minimal length of SSR was defined as 2 x 9 = 18
bp for dinucleotides, 3 x 6 = 18 bp for trinucleotides, 4 x 5 = 20 bp for tetranucleotides, 5 x 4
= 20 bp for pentanucleotides, and 6 x 3 = 18 bp for hexanucleotides. ESTs containing SSRs
were assembled in Seqencher® version 4.2 (Gencodes, Ann Arbor, MI, USA) under criteria of
40% minimum overlap and 90% minimum match percentage. Based on the gene annotation
number within the primer position on chromosome non-EST SSRs were found from EST. For
gene annotations, we used the grape genome browser (http://www.genoscope.cns.fr/externe/
GenomeBrowser/Vitis).
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PCR amplification and verification of genomic DNA

Twenty-five pairs of grapevine EST-SSRs and 25 pairs of non-EST SSRs were
used to conduct PCR amplification. PCR amplification was carried out in a 20-pL reac-
tion system containing 2 pL genomic DNA (30 ng/uL), 0.8 pL 10 pmol of each primer,
0.1 uLL. Taq DNA polymerase (5 U/uL ), 2 uLL 10X buffer, 1.6 uL 25 mM MgCl,, and 1.2
pL 2.5 mM dNTPs. The amplification of the reaction was performed in an Eppendorf
Authorized Thermal Cycler using the following temperature cycling parameters: initial
denaturation for 5 min at 94°C; 35 cycles of denaturation at 94°C for 40 s, the corre-
sponding annealing temperature for 40 s, and extension at 72°C for 1 min; and a final
extension step at 72°C for 10 min. PCR products were resolved by non-denaturing poly-
acrylamide gel electrophoresis to check the DNA banding patterns.

Data collection and analysis

In order to analyze the polymorphisms of the 2 parental grapevine lines, EST-
derived and non-EST SSR polymorphic bands were visually scored as either present (1)
or absent (0) and were used to create a binary data set, in which only clear unambiguous
bands on non-denaturing polyacrylamide gels were chosen and scored. Data were en-
tered in Microsoft® Excel (Microsoft Corp.) spreadsheets.

To measure the marker polymorphism, the polymorphism information content
(PIC) for each EST-derived and non-EST SSR was calculated according to the formula
PIC =1 - Ypi%, where pi is the frequency of the ith allele for each SSR marker locus in
the set of 94 F, hybrids from the cross between “Early Rose” and “Red Globe” (Weir,
1990). The PIC parameter was estimated using the PowerMarker V3.25 software (Liu
and Muse, 2005).

RESULTS AND DISCUSSION
Identification and characterization of grape EST-derived and non-EST SSRs

A total of 2522 of 362,375 grapevine ESTs that were retrieved from NCBI on No-
vember 21, 2010 contained SSRs. Because some of them had multiple SSR sites, a total of
1984 SSR motifs were identified among these 2522 EST. Among the EST-derived and non-
EST SSR repeats, trinucleotide repeats, which accounted for 34.09% of total SSRs, were the
most abundant repeat unit followed by tetranucleotide (28.58%), dinucleotide (19.07%), pen-
tanucleotide (12.64%), and hexanucleotide repeats (5.59%; Table 1). These findings agree
with previous observations of SSR units in barley, maize, rice, sorghum, and wheat (Kantety
et al., 2002). Among the SSRs, the most abundant dinucleotide repeat was AG/CT, which
accounted for 85.65% of total EST-SSRs, and the most common EST-derived trinucleotide,
tetranucleotide, pentanucleotide, and hexanucleotide repeats were AAG/CTT (32.55%),
AAAG/CTTT (29.21%), AGAGG/CCTCT (24.45%), and AGGGGG/CCCCCT (14.18%),
respectively (Table 1).
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Table 1. Characterization of 2522 grape EST-SSRs.

Unit size No. of EST-SSRs Percentage Abundant type Percentage
Dinucleotide 481 19.07 AG/CT 85.65
Trinucleotide 860 34.09 AAG/CTT 32.55
Tetranucleotide 721 28.58 AAG/CTTT 29.21
Pentanucleotide 319 12.64 AGAGG/CCTCT 24.45
Hexanucleotide 141 5.59 AGGGGG/CCCCCT 14.18

Comparison of EST-derived and non-EST SSRs

A total 131 alleles were amplified using 50 primer pairs. Among them 78 were ampli-
fied from EST-derived SSRs and 53 were from non-EST SSRs. DNA polymorphisms within
and/or between the grape F| population from the cross between “Early Rose” and “Red Globe™
varieties were investigated on the basis of EST-derived and non-EST SSR markers, and poly-
morphisms were observed based on allele frequencies at each locus examined. The number of
alleles per locus at EST-derived and non-EST-SSR ranged from 2 to 6 and 2 to 5, respectively,
with an average of 3.12 for EST-derived and 2.12 for non-EST SSRs, which is comparable to
the polymorphisms at SSR loci that were reported in maize (2 to 13, with an average of 6.5;
Labate et al., 2003), tea (2 to 7, with an average of 4.39; Ma et al., 2010), and cucumber (2 to
8, with an average of 3.44; Mu et al., 2008). The EST-derived SSR markers showed a maxi-
mum PIC value of 1 and a minimum PIC value of 0.33. The non-EST SSR markers showed a
maximum PIC value of 1 and a minimum PIC value of 0.25. The average PIC value for EST-
derived SSR markers was 0.56 while that for non-EST SSR markers was 0.45.

Gene discovery is one of the most important tasks in the subsequent analysis of
genome sequencing projects. ESTs are a short sub-sequence of a cDNA sequence that also
represents portions of expressed genes. ESTs can be mapped in the chromosome sequences,
and we investigated the sequencing project quality of grapevine by mapping 205 primer pairs
from 2522 of 362,375 ESTs with each chromosome (Table 2).

Table 2. Number of EST-derived and non EST-SSR sequences located on different chromosomes.

Chromosome No. Accession No. Length of chromosome (bp) Quantity of EST-derived SSR Quantity of non-EST-SSR

chrl NC_012007 15,630,816 7 0
chr2 NC 012008 17,603,400 8 0
chr3 NC_012009 10,186,927 12 1
chr4 NC_012010 19,293,076 10 2
chr5 NC 012011 23,428,299 13 2
chr6 NC 012012 24,148,918 11 0
chr7 NC_012013 15,233,747 11 1
chr8 NC_012014 21,557,227 7 3
chr9 NC 012015 16,532,244 5 3
chr10 NC 012016 9,647,040 6 1
chrll NC_012017 13,936,303 8 1
chrl12 NC_012018 18,540,817 11 2
chrl3 NC_ 012019 15,191,948 3 0
chr14 NC 012020 19,480,434 15 2
chrl5 NC_012021 7,693,613 6 1
chrl6 NC_012022 8,158,851 5 0
chrl7 NC_012023 13,059,092 11 0
chr18 NC 012024 19,691,255 13 1
chrl9 NC 012025 14,071,813 8 2
Chr unknown 0 3+4 (not amplified)
Total 176 29
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In this study, we used 25 EST-derived primer pairs that predict the gene within the
primer position on chromosomes, but non-EST SSR primer pairs could not predict any gene
within the primer position on chromosomes (Tables 3 and 4). We also made an attempt to
use the EST-SSR and non-EST SSR markers to predict the gene information within 0.1 Mb
of the forward and reverse primer positions on the chromosome. A total of 440 genes were
found in different positions on different chromosomes using 25 primer pairs of EST-derived
SSR markers (Table S1), and 329 genes were found using 25 primer pairs of non-EST
SSR markers (Table S2). This may be because EST-SSRs are expressed sequences in the
grapevine genome, which may be functionally associated with components of different traits,
whereas the non-EST SSRs may be randomly distributed across the genome. Studies carried
out in sugarcane (da Silva, 2001) and wheat (Eujayl et al., 2002) indicated that EST-SSRs
were highly useful because of their high polymorphism, cross-transferability across species,
and, most importantly, their association with sequences coding for function. They are found
in different regions on chromosomes, such as the protein-coding and non-protein-coding
sequences.

EST-derived and non-EST SSR marker development and validation

With the availability of large numbers of ESTs, the development of SSR markers from
ESTs through data mining has become an efficient option for many plant species, which is
also a successful way to utilize the ESTs that were released publicly. In this study, 205 unique
SSR primer pairs were randomly selected, and among the 205 primer pairs, 176 EST-derived
and 29 non-EST SSR primer pairs were identified (Table 5). Of the 176 EST-derived SSR
primers, 25 pairs were randomly selected, all 25 primer pairs (100%) amplified the antici-
pated PCR products, and 21 primer pairs (84%) showed polymorphic bands (Figure 1). On the
other hand, among the 29 non-EST SSR primer pairs, 25 pairs (86.20%) amplified anticipated
PCR products, and 12 primer pairs (48%) showed polymorphic bands (Figure 1). This result
indicated that EST-derived SSRs showed higher levels of polymorphism than non-EST SSR
markers. Compared to genome-derived markers, EST-SSRs are highly transferable for detect-
ing gene-rich areas within the genome. We can use these markers to evaluate marker transfer-
ability across taxa and conduct analysis in comparative mapping and gene functional diversity
analysis, in addition to genotyping. In conclusion, large-scale EST information was generated,
which can be of great use in further research on genotyping, cultivar identification, and linkage
map analysis of V. vinifera.

Supplementary material
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Table 3. Twenty-five pairs of EST-derived SSR markers and their polymorphic information content.
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Marker NCBI GI Primer sequences (5'-3')* Primer position Chromosome Total Polymorphic Polymorphic Gene annotation
D No. on chromosome No. alleles  alleles information No. within the
content  primer position
on chromosome
EMO002 gi:161717677 F: GGAAGCAGAAACAGCAGAGG 4417599-4417618 Chr5 3 2 0.66 GSVIVT01017
R: GGTGGTGTGCGGATAGACTT  4417891-4417872 890001
EMO10 gi:161721396  F: ACCGCTTCTTTGCCTCTTCT 8713612-8713631 Chrl8 3 2 0.66 GSVIVT01009
R: GATAAACCCCCTCCAGCAAT  8713911-8713892 478001
EMO023 gi:161718390 F: CAGAAGCCCAAGAAAGATCG  21592915-21592934 Chr8 5 2 0.40 GSVIVT01033
R: CTTCTTTGGAGCTGGTGGAC ~ 21593075-21593056 314001
EMO030 gi:161717492  F: GACCATGTTCTCTCCGCTTC 1263697-1263678 Chr2 2 2 1.00 GSVIVT01019
R: CGGATGTACTCGTCCTCCAT 1263490-263509 517001
EMO037 Contig 1178  F: CATTCCGCCATTTCAAGATT 18561748-18561729 Chrl3 4 3 0.75 GSVIVT01036
R: TAGGGTTGCCATTCTTCACC 18561589-18561608 582001
EMO045 Contig 130 F: GACGTGGCGCTTCCTACTAC ~ 1722810-1722791 Chrl14 5 2 0.40 GSVIVT01031
R: CACAGCCATCAATCTCTCTCC  1722608-1722628 147001
EMO053  Contig 768 F: GCGATATGAGCCAAGACCAT  4306581-4306600 Chr3 1 0 0.00 GSVIVT01031
R: CTGTGGAGGTTGAGGGTGAT  4306747-4306728 779001
EMO066 Contig 293 F: AGCTTGAATCCTGGGAACCT  15949408-15949427 Chrl3 1 0 0.00 GSVIVT01027
R: TACATCCTGCTTTGGCAGTG ~ 15949731-15949712 355001
EMO080 Contig 968 F: TCCTCGACTACCGCAGCTAT  7068516-7068497 Chrl7 1 0 0.00 GSVIVT01007
R: CACACGGTTTGTATCGCTTG ~ 7068245- 068264 970001
EMI100 Contig 1394  F: TCGGCTTCACACTCCTCTCT  21714984-21714965 Chr8 1 0 0.00 GSVIVT01033
R: GGAACCCACTTTTCCTCCTC ~ 21714799-21714818 299001
EMI19 gi:110732353  F: TGGAAGCGAGAATGTCAATG  21316360-21316341 Chr4 6 5 0.83 GSVIVT01026
R: GGCACACTTGCTTAGGCTCT  21316154-21316173 588001
EMI27 gi:110732806 F: GACCATGTTCTCTCCGCTTC 1263697-1263678 Chr2 3 2 0.66 GSVIVT01019
R: CGGATGTACTCGTCCTCCAT 1263490-1263509 517001
EMI30 gi:110732828 F: CCAATGAGGGCAGCAATAAC  3100081-3100062 Chrl7 5 3 0.60 GSVIVT01008
R: TCAGGAACAACGCACTCAAC  3099814-3099833 343001
EMI137 gi:110733208 F: CGAGCCCATCTACTCACCTC  3751261-3751280 Chrl7 3 2 0.66 GSVIVT01008
R: TGTGCCGCTCCTTCTATTCT 3751433-3751414 273001
EMI139 gi:111125110  F: AGGGAGATTGGTGGAGGTTT  16884639-16884620 Chrl1 2 1 0.50 GSVIVT01010
R: TCGGTTTCTCTGGAAAATGG  16884402-16884421 855001
EMI50 gi:122689074 F: GGATGAAGGGCAACACATCT  4703290-4703271 Chr5 3 2 0.66 GSVIVT01017
R: GAACCAATCAACCGAGCATT  4702955-4702974 920001
EMI55 gi:122689350 F: GGTGTGGAGTGTTGGGAGAT  8026360-8026379 Chr5 2 1 0.50 GSVIVT01027
R: TGGTCGCAAGTGCAACTTAT  8026566-8026547 809001
EMI157 gi:122689538 F: CTCTGGACAACAACCCATCC  11385202-11385221 Chr4 2 1 0.50 GSVIVT01035
R: GGAGGTGCAGAACAAGAAGC 11385460-11385441 252001
EMI164 gi:122689756 F: CTTCTTCAGGGCACCATAGC  4242887-4242868 Chrl12 4 2 0.50 GSVIVT01020
R: CAAACCTCGACGTCTCCAAT  4242694-4242713 566001
EMI176 gi:122690179 F: CAACGTCTCCCTTGCTTCTC  5000563-5000582 Chrl8 4 3 0.75 GSVIVT01009
R: TCCACACTCTGATTCGTTGC ~ 5000714-5000695 096001
EMI82 gi:122690385 F: CAAGAAGCTCCAAACCAAGC 3394634-3394615 Chr7 3 2 0.66 GSVIVT01028
R: CGGCGACTTTCAAAGAGAAC  3394398-3394417 044001
G9 grffca0_001748 F: ATGGTCGTGGAATGTGTGAA  8037601-8037582 Chrl14 4 2 0.50 GSVIVT01036
R: CAATGCCTTGTGCTTGAAGA  8037430-8037449 25001
Gl14 grffca0_003143 F: TCTCTGTAATTCCCTCGATTTTT 837689-837878 Chr5 3 1 0.33 GSVIVT01035
R: GAGAATCCGCCTGTTTTGAG ~ 837878-837859 005001
G23 Contig754 F: GGAATCTTTTCCTGTTCTCA 6001035-6001016 Chr3 5 2 0.40 GSVIVT01003
R: CCATGGTGGTGAAGATTGAA  6000832-6000851 172001
G32 Contig875 F: GAAGAATCCAAATGGGAGC 17979716-17979735 Chrl6 3 2 0.66 GSVIVT01028
R: GCCAATACCGTCCTTGAAGA  17980047-17980028 868001
Total 78 44
Average 3.12 1.76 0.56

*Every two primers belong to one pair. F and R = forward and reverse primers, respectively.
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Table 5. Origin of the grape EST-derived and non EST-SSR marker used for polymorphism.

Total markers Total EST-derived SSR Total non EST-SSR Reference
22 20 2 Wang et al., 2012
183 156 27 Kayesh et al., 2013

Total number of Fitis
ESTs Investigated: 362,375

|

33E primer pairs designed
and validation: 205

EST-derived 53R Non EST-35R

primers pairs: 176 Primer: 29
Randomly selected Amplified primer Mot amplified
25 primer pairs and pairs: 25 primer pairs: 4

all were amplified

Total polymorphic Non-polymorphic
primer pairs: 12 primer pairs: 13
Total polymorphic Non-polymorphic
primer pairs: 21 primer pairs: 4

Figure 1. Flow chart of Vitis EST-derived and non-EST-SSR characterization.
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