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ABSTRACT. The aim of this study was to identify feature genes that 
are associated with hereditary hemochromatosis (HHC; iron overload) 
in cardiac and skeletal muscle of mice. First, the expression profile 
GSE9726 was downloaded from Gene Expression Omnibus database 
which included 12 samples. Then the differentially expressed genes 
(DEGs) were identified by R language. Furthermore, the KUPS software 
was used to identify relationships in interactions among common DEGs 
in the cardiac and skeletal muscles. We then used the EASE software to 
obtain enriched pathways in a gene interaction network. Finally, we used 
the plugins of the Cytoscape software, i.e., Mcode and Bingo, to conduct 
module analysis. By comparing diseased and normal tissue samples, 
5 and 6 genes in the cardiac and skeletal muscles, respectively, were 
identified as DEGs. We observed that the S100a8 and S100a9 genes were 
common DEGs in both tissues examined. In addition, we constructed 
an interaction network with common DEGs and their interacting 
components, and identified S100a8 and S100a9 as being associated with 
immune responses. In view of the relationship between the early stage of 
myelodysplastic syndrome and the immune system, we hypothesize that 
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the expression of the S100a8 and S100a9 genes is a feature that can be 
used for diagnosis during the early stage of the myelodysplastic syndrome 
and that the 2 genes could be used as targets in treating this disease.
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Hereditary hemochromatosis; Functional enrichment analysis

INTRODUCTION

Myelodysplastic syndrome (MDS) is a heterogeneous clonal disease characterized 
by bone marrow (BM) myeloid cells dysplasia, ineffective hematopoiesis, and blood 
cytopenias. MDS also poses an increased risk of transformation to acute myeloid leukemia 
(AML) (Jadersten and Hellstrom-Lindberg 2009) -approximately 30% of MDS cases progress 
to AML. In the United States alone, the estimated number of MDS cases reported per year 
is about 40,000-76,000 with a gross medical cost of about US $30,000 per 44 persons per 
year (Beck et al. 2011). The genetic landscape of MDS remains largely unknown. Currently 
proposed models of the disease suggest gene mutations, deregulated gene expression, and 
epigenetic changes as key steps in MDS pathogenesis (Bejar et al., 2011).

Hereditary hemochromatosis (HHC) is a type of myelodysplastic anemia. It is a com-
mon genetic trait that increases the risk of developing systemic iron overload. The disorder 
is caused by mutations in genes encoding various proteins involved in the regulation of iron 
access to the blood (Majore et al., 2013). In HHC, iron progressively accumulates to toxic 
levels in most tissues, a process that is particularly damaging to the liver, heart, pancreas, 
and pituitary gland. If left untreated, the continuing iron deposition leads to arthritis, endo-
crine disorders (including delayed growth, impotence, and diabetes), cirrhosis of the liver, and 
heart failure. Death due to HHC is often the result of toxic effects due to the progressive iron 
overload resulting from sustained iron absorption and/or blood transfusions administered in 
order to treat the anemia (Pietrangelo, 2010). Significant changes in the symptoms of HHC 
have been observed in recent years, HHC is rarely fully expressed in clinical settings and the 
disorder displays a large phenotypic heterogeneity (Sredoja Tišma et al., 2012).

At present, microarrays are used as efficient tools to investigate and report gene ex-
pression patterns in biomedical studies and have been effectively used in phenotypic classifi-
cation based on gene-expression profiles (GEPs). Due to the large number of probes/features 
(hundreds to thousands) deployed in a microarray, a critical step in the microarray-based dis-
criminating analysis is feature selection (Arisi et al., 2011). Feature selection has been shown 
to effectively help in understanding the correlation between gene expression profiles and spe-
cific phenotypes (Xiong et al., 2001). The heart muscle is one of the specific tissues affected 
by iron overload, which results in cardiomyopathy in some HHC patients (Rodriguez et al., 
2007). In this study, to better understand the mechanisms behind the pathological effects of 
iron overload on muscle cells, we performed a genome-wide expression analysis of genes in 
skeletal and heart muscle of mice with or without iron loading. We analyzed microarray data 
of samples from HHC mouse myocardium and skeletal muscle subjected to excessive iron 
load, to screen for marker genes of myelodysplastic anemia (iron overload). The results of 
this analysis may reveal novel links between iron overload and pathological manifestations of 
HHC, which may provide important information for treating HHC in the clinic.
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MATERIAL AND METHODS

Oligonucleotide bead chip data

The chip dataset GSE9726 was downloaded from the Gene Expression Omnibus (GEO) 
database (http://www.ncbi.nlm.nih.gov/gds), which was obtained with the GPL4234 Sentrix 
Mouse-6 Expression BeadChip platform. The data set included 12 samples, including 4 normal 
heart and skeletal muscle samples and 4 heart and 4 skeletal muscle samples with iron overload.

Microarray analysis

Microarray analyses were performed by the Limma package in R language to identify 
differentially expressed genes (DEGs) in normal and iron-overload samples (Troyanskaya et 
al., 2001; Smyth et al., 2005; Fujita et al., 2006). 

A P < 0.05 and a |logFC| > 1 were set as threshold of screening for DEGs and identify-
ing common DEGs both in heart and skeletal muscle samples.

The KUPS software links to protein interactions in 3 different protein-interaction da-
tabases (IntAct, MINT, and HPRD). Therefore, KUPS was used to search for relationships 
among interactions of the common DEGs in the cardiac and skeletal muscles (see Figure 1) 
(Chen et al., 2011). The EASE software was then used to perform analysis of the predicted 
functions of the DEGs and to screen for enriched pathways of genes in the interaction network 
(Hosack et al., 2003) Finally, we used the plugins of the Cytoscape software (Shannon et al., 
2003), Mcode and Bingo, to perform module analysis (Benza et al., 2010).

Figure 1. Flowchart of the KUPS software.
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Statistical analyses

The mean values and standard deviations were calculated from technical triplicates 
in experiments. The Student t-test (unpaired and 2 tailed) was used to test for statistical sig-
nificance of the differences in differential gene expression between control and iron-overload 
samples. A P < 0.05 and |logFC|>1 were set as thresholds of screening for DEGs.

RESULTS

Specific gene expression screening

After data pretreatment, the normalized data (Figure 2) of the gene expression profiles 
were used in comparative analysis, which identified 5 DEGs in myocardial muscle samples 
and 6 DEGs that met the difference threshold in skeletal muscle samples. Two genes, S100a8 
and S100a9, which were differentially expressed in both tissues, were identified as common 
DEGs (see Table 1).

Figure 2. Gene expression value chart after standardizing. Blue, pink, orange, and green boxes indicate normal 
heart, iron overload heart, normal skeletal muscle and iron overload skeletal muscle samples. The black line in box 
is the median of every data. We can determine data standardization by its distribution. In this figure, the median line 
is almost on the same line, this indicate that standardization degree is very good.
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Interaction prediction of the common DEGs

The KUPS software was used to search for interactions of the 2 common DEGs, 
S100a8 and S100a9, with other genes, and an interaction network was constructed. As shown 
in Figure 3, the S100a8/a9 genes interacted with TLR4, RAGE, CD68, CD14, and other genes.

(a)
ID	 Gene symbol	 P value	  logFC

1090041	 Dnajb1	 2.43E-07	 -1.30968
1850315	 Fos	 1.47E-05	 -1.01542
70112	 S100a8	 5.71E-07	  1.36072
7050528	 S100a9	 8.43E-08	    1.101616
1230605	 Slc25a25	 2.91E-06	 -1.20058
(b)
ID	 Gene symbol	   P value	   logFC

840538	 Acta1	   0.00009199	 -1.25467
6760593	 Angptl4	   0.00005426	    1.683493
1690017	 Hsph1	   0.00008896	 -1.15994
6400300	 Pdk4	   0.00017326	    1.187162
70112	 S100a8	 0.0040153	    1.293363
7050528	 S100a9	   0.00273445	    1.029499

The mean values and standard deviations were calculated from technical triplicates experiments. P < 0.05 and 
|logFC|>1 were regarded as significant.

Table 1. Differentially expressed gene list of heart muscle (a) and skeletal muscle (b) samples.

Figure 3. Interaction networks of common differences in gene expression between S100a8 and S100a9 predicted. 
In this figure, triangle nodes represent the S100a8 and S100a9 genes, the other round nodes represent the interactive 
objects predicted by software.

Gene functional enrichment analysis in the interaction network

All genes were entered into the EASE software, and 3 significantly enriched functions 
for the S100a8 and S100a9 genes were obtained. These functions included defense and trauma 
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responses and inflammatory reaction. Among these 3 functions, the most significant function 
was associated with immune defense responses (see Table 2).

(a)
GO-ID	 P value	 Corr. P value	 Description

2376	 3.33E-06	 2.88E-04	 Immune system process
9987	 2.38E-06	 2.88E-04	 Cellular process
50896	 9.30E-06	 3.88E-04	 Response to stimulus
51179	 1.86E-03	 1.05E-02	 Localization
19222	 1.94E-02	 3.98E-02	 Regulation of metabolic process
(b)
GO-ID	 P value	 Corr. P value	 Description

50896	 2.49E-03	 2.40E-02	 Response to stimulus
42221	 8.02E-03	 3.58E-02	 Response to chemical stimulus

Term	 Function	 P value	 FDR

GO:0006952	 Defense response	 8.47E-07	 0.00135311
GO:0009611	 Response to wounding	 1.45E-06	 0.00232245
GO:0006954	 Inflammatory response	 1.46E-06	 0.00232438
The mean values and standard deviations were calculated from technical triplicates experiments, P < 0.05 and FDR 
(False Discovery Rate) <0.05 are considered significant.

Table 2. List of gene enrichment function on network.

Module function analysis of the interaction network

After visualizing the network by using Cytoscape, the whole network function module 
was classified and annotated by the plugins Mcode and Bingo on the basis of the hypergeometric 
distribution (P < 0.05), and models containing the S100a8 and S100a9 genes were obtained 
(see Figure 4). The located modules for S100a8 and S100a9 had 5 and 2 significant functions, 
respectively (see Table 3).

A B

Figure 4. Gene S100a8 and S100a9 located module. A. Gene S100a9 located module B. Gene S100a9 located 
module. In this figure, triangle nodes represent the S100a8 and S100a9 genes, the other round nodes represent the 
interactive objects predicted by software.

Table 3. Function list of the S100a8 (a) and S100a9 (b) genes located module.

S100a8 and S100a9 located modules had 5 and 2 significant functions respectively. The mean values and standard 
deviations were calculated from technical triplicates experiments, P < 0.05 was regarded as significant difference.
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DISCUSSION

Maintaining iron homeostasis is crucial for normal metabolic functions in humans. 
Loss of function of proteins involved in these regulatory mechanisms can cause HHC. HHC 
is a common genetic disorder involving dysregulation of iron absorption. HHC results in iron 
overload characterized by high transferrin saturation, low iron content in macrophages, and 
deposition of iron in several organs, including the liver, heart, and pancreas. Causative muta-
tions for HHC have been described for several genes, namely, HFE, TFR2 (encoding transfer-
rin receptor 2), HJV (encoding hemojuvelin), and HAMP (encoding hepcidin) (Camaschella et 
al., 2000; Roetto et al., 2003). It has been proposed that these mutations cause deficient hepci-
din synthesis (Papanikolaou et al., 2004; Nemeth et al., 2005). However, few studies have used 
effective high-throughput screening such as gene microarrays to screen for gene mutations. 

HHC encompasses genetic disorders of iron overload characterized by deficient expres-
sion or function of the iron-regulatory hormone hepcidin, and the heart muscle is one of the 
target tissues affected by iron overload, resulting in cardiomyopathy in some HHC patients (Ro-
driguez et al., 2007). Therefore, to better understand the mechanisms behind the pathological 
effects of iron overload in skeletal muscle and heart muscle, we have performed a genome-wide 
gene expression analysis in skeletal and heart muscle of mice with or without iron loading.

Among the upregulated genes showing the highest fold changes in expression in sev-
eral studies are 2 genes, S100a8 (calgranulin A) and S100a9 (calgranulin B), which encode 
calcium- and zinc-binding proteins. The S100A8 and S100A9 proteins have molecular masses 
of 10.8 and 13.2 kDa and are 93 and 114 amino acids long, respectively (Schafer and Heiz-
mann, 1996; Salama et al., 2008). The S100A8 and S100A9 proteins became the focus of 
intensive research because of their association with numerous human disorders, including 
acute and chronic inflammatory conditions, autoimmune diseases, cancer, atherosclerosis, car-
diomyopathies, and neurodegenerative diseases (Healy et al., 2006), and they also play crucial 
roles in normal physiological processes within cells. Some authors have reported that the 
transcripts of both S100a8 and S100a9 are strongly upregulated in skeletal muscle, heart, and 
liver of iron-loaded mice; however, the levels of the S100a8 transcript in skeletal muscle are 
very low and, in general, both genes are weakly expressed. It is noteworthy that the S100a8 
and S100a9 transcripts show a very similar pattern of upregulation in these tissues, which is 
consistent with the observation that the 2 proteins form a heterodimer (Rodriguez et al., 2007).

To date, increasing evidence suggests that both S100A8 and S100A9 are involved 
in many intra- and extracellular biological processes. This functional diversity lies in their 
ability to interact with various protein targets and to modulate the structures and functions of 
these targets. Many researchers have screened for the extracellular function of the S100A8/
A9 protein complex and identified a number of interaction partners or receptors. For example, 
Kerkhoff et al. (2001) identified the FAT/CD36 receptor as being involved in facilitating 
the uptake of arachidonic acid bound to the S100A8/A9 protein. Furthermore, S100A8 has 
been shown to interact with TLR4, amplifying phagocyte activation during sepsis (Vogl et 
al., 2007). The receptor for advanced glycation end products (RAGE) has been proposed to 
serve as a cellular receptor of S100A8/A9, thereby mediating some of the activities described 
(Herold et al., 2007). Bode et al. (2008) have presented evidence that annexin A6 interacts 
with S100A8/A9 and that this interaction takes place in membranous structures. Moreover, 
the presence of annexin A6 in the cell membrane may be necessary but not sufficient for 
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the calcium-induced cell surface exposition of S100A8/A9. Recently, Li et al. (2003), have 
reported that oncostatin induces S100A9 via a STAT3-dependent pathway in MCF-7 cells 
and that at least in MCF-7 cells oncostatin M-mediated growth inhibition is ablated by the 
repression of S100A9 expression. 

The gene set enrichment analysis essentially investigates whether the expression of 
a list of genes in a microarray data set is positively or negatively associated with one of the 
two experimental groups (e.g., in mice with and without iron overload). In this study, analysis 
of the microarray data sets identified several genes whose expression were altered in skeletal 
muscle and heart because of iron overload. By comparing gene expression in normal and iron-
overload samples, we observed that both S100a8 and S100a9 were common DEGs in the heart 
and skeletal muscle. We obtained the feature genes S100a8 and S100a9, which are related to 
HHC (iron overload), and the gene-set enrichment analysis indicated an enrichment of genes 
involved in iron overload.

Over the past 20 years, the protein complexes of S100A8 and S100A9 have emerged 
as very potent biomarkers of a wide range of inflammatory processes (Healy et al., 2006; 
Bresolin et al., 2012). Therefore, we speculate that S100A8 and S100A9 and the proteins with 
which they interact not only serve as useful markers of inflammation, but also play critical 
roles in the pathogenesis of inflammatory disorders.

According to the relationship between early stage of MDS and the immune response, 
we hypothesize that expression of the S100a8 and S100a9 genes represent diagnostic features 
of early-stage MDS and that the 2 genes could be used as targets for clinical treatment of 
MDS. Our results might have revealed novel links between iron overload and pathological 
manifestations of HHC. Further investigation of the S100A8 and S100A9 genes may lead to a 
better understanding of how iron overload contributes to these common HHC manifestations.
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