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Biochip analysis of prostate cancer
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ABSTRACT. Microarray expression analysis was used to forecast
the roles of differentially co-expressed genes (DCG) and DCG
and links in the pathogenesis of prostate cancer. In addition, we
demonstrate that the relationship between transcriptional factors
(TFs) and their targets can be considered a key factor in determining
the difference between primary and metastatic prostate cancer.
Regulatory impact factors were adopted to calculate the impact
of TF. We identified 5 TFs and 29 target genes important in the
transition between normal prostate and primary prostate cancer and
2 TFs and 7 target genes important in the transition between primary
and metastatic prostate cancer. These results suggest that it may be
possible to predict the clinical behavior of prostate cancer based on
gene expression analysis.
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INTRODUCTION

It is a challenge to predict the prognosis in prostate carcinoma even though it is the
cancer most frequently diagnosed. Prostate cancer, a leading cause of cancer death, displays
a broad range of clinical behavior, from relatively benign to aggressive metastatic disease
(Hsing et al., 2000). Its incidence and mortality vary in different parts of the world, but these
values are the highest in western countries, with an estimated 1,479,350 new cancer cases and
562,340 deaths in the United States in 2009 (Jemal et al., 2009). Despite the high death rate,
prostate cancer is often a slow-developing disease, and patients can remain asymptomatic for
years. Early diagnosis provides an opportunity for curative surgery. The challenge is to iden-
tify methods for detecting the symptoms of prostate cancer and the risk of relapse.

Several clinical features of prostate cancer, including tumor stage (Jewett, 1975), de-
gree of tumor cell differentiation [Gleason score (Gleason, 1966)], and serum prostate-specific
antigen (PSA; Stamey et al., 1987), are used in routine clinical prognosis. However, these
prognostic indicators do not accurately predict clinical outcomes for individual patients. Mi-
croarray profiling studies have identified clinically relevant gene-expression subtypes in leu-
kemia (Ramaswamy et al., 2001), lymphoma (Alizadeh et al., 2000), breast cancer (Perou et
al., 2000), and lung cancer (Chen et al., 2003). Because there are few DNA microarray studies
of prostate cancer, tumor subtypes based on gene expression have not been defined.

Recently, genomic methodologies have been used to discover consistent gene expres-
sion patterns associated with a given histological or clinical phenotype (Golub et al., 1999;
Perou et al., 2000; Van’t Veer et al., 2002). Here, gene expression patterns of tissues from nor-
mal prostate, primary prostate cancer, and metastatic prostate cancer were studied in order to
analyze changes in biochemical pathways possibly leading to primary and metastatic prostate
cancer. Combining this with studies of the regulation of transcription factors and their target
genes, we could find those that assist in providing a more accurate picture of the likely course
of the disease. Our data suggest that it may be possible to predict the clinical behavior of pros-
tate cancer based upon gene expression analysis.

MATERIAL AND METHODS
Gene expression profiling analysis

One transcription profile of GSE3325 (Su et al., 2011) was obtained from GEO, a pub-
lic functional genomic data repository (http://www.ncbi.nlm.nih.gov/geo/). This profile is based
on Affymetrix GPL571 platform data (Affymetrix Human Genome U133A 2.0 Array). Only 5
primary prostate cancer chips, 4 metastatic prostate cancer chips, and control chips are available.

In this paper, we used differentially co-expressed genes (DCGs) and DCG links
(DCGL) to analyze differentially expressed genes. Gene co-expression analysis was devel-
oped to explore gene interconnections at the expression level from a system perspective, and
differential co-expression analysis, which examines the change in gene expression correlation
between two conditions, was accordingly designed as a complementary technique to tradi-
tional differential expression analysis (Liu et al., 2010; Yu et al., 2011). The third part, the core
of the study, includes five methods for identifying DCGs and DCGLs, which mainly differ in
the measure of differential co-expression of a gene. After gene filtration and link filtration,
suppose gene i is associated with n, links whose co-expression values are projected to X = {x,,
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X X b @AY = {y, , ¥,,,..., ¥, .} fOr two conditions. The differential co-expression measures

i2°° ini

of dlfferent methods are given in the following equations.

dC. = (x; _yil)2 +(x, _yi2)2 +. 4 (x, _ym)2
! n

(Equation 1)

In this equation, x, represents the correlation value of gene 7 and gene 1 at state 1, and
y,, represents the correlation value of gene i and gene 1 at state 1.

Data analysis of transcription factors (TFs) and TF target genes

In our paper, we used human transcription factors and their chromosomal regions
from the UCSC database (http://genome.ucsc.edu) to annotate the message download from the
database. The relationships between TF and target genes were obtained after analysis.

Data analysis of biological pathways

In order to understand the metabolic changes occurring in prostate cancer cells and
the normal prostate, we obtained the metabolic pathways through the KEGG PATHWAY
DATABASE and used the DAVID website to analyze the differentially expressed genes by the
KEGGPATHWAY cluster method (Alberts, 1990; Alonso et al., 2009).

Regulatory impact factor (RIF) calculations

When determining if the differential co-expression links were TF-target gene links, or
if the target genes were differentially expressed genes, we could make further analyses: If the
TF were a DCG, but its target gene was a non-DCG, it suggests that the TF and target gene have
synergistic effect. If the TF were a non-DCG, but its target gene was a DCG, it suggests that the
TF may interact with its target gene by changing its conformation as, for example, when the TF
is phosphorylated to achieve its active state: although the expression does not change, it can lead
to target gene profile fluctuations. In this paper, in order to more clearly show the selected impact
of the TF, we adopt RIF (Reverter et al., 2010) to calculate the impact, as shown in Equation 2.

J=nge
RIF, = Z [(el; x rll]) —(e2, xr2l]) ] (Equation 2)

nde Jj=1

In this equation, n , represents the number of differentially expressed genes, the factor
el represents the expression value of differentially expressed genes, and 7/ represents the
correlation coefficient between differentially expressed genes 7 and j at state 1. Similarly, the
factor e2, represents the expression value of differentially expressed genes, and r2, represents
the correlation coefficient between differentially expressed genes i and j at state 2!

RESULTS
Selecting the differentially expressed genes

With DCGL, we made a differential co-expression analysis of normal prostate sam-
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ples versus primary prostate cancer samples (benign vs primary) and metastatic prostate can-
cer samples vs primary prostate cancer samples (primary vs metastatic) to obtain the P value
and differentially co-expressed link (DCL). Then, we set q < 0.25 as the threshold of DCG,
and DCL, as shown in Table 1. It was predicted that DCG and DCL play important roles in
disease progression to primary or metastatic prostate cancer.

Table 1. Number of differentially expressed genes between benign, primary and metastatic cancer.

Benign vs primary Primary vs metastatic
DCG 1258 997
DCL 475023 339863

DCG = differentially co-expressed genes; DCL = differentially co-expressed link.

Data analysis of TF and TF target genes

The above differentially expressed genes compared with their TF and its target gene,
and the regulatory relationship between TF and the target gene are shown in Table 2. This
regulatory relationship was considered a key factor in causing the difference between primary
and metastatic prostate cancer.

In our paper, comparisons between normal prostate, primary and metastatic prostate
cancer are shown in Figure 1.

Table 2. Number of differentially expressed genes and the regulatory relationship between benign, primary and
metastatic cancer.

Benign vs primary Primary vs metastatic
TF—target gene 384 252
TF 54 43

TF = transcriptional factor.

A

Figure 1. Comparison of differentially expressed genes. A. Benign vs primary cancer. B. Primary vs metastatic
cancer. Circular points = targets genes; square points = transcriptional factor genes; red points = differentially co-
expressed genes (DCGs); gray points = non-DCGs.
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Analysis of TF impact

From the above analysis, the relationship between TFs and target genes was prelimi-
narily considered as the last step leading to differential expression. To further characterize the
size of the impact on TFs and target genes, RIF were adopted to calculate the maximal impact
of TF. Results are shown in Tables 3 and 4.

Table 3. Regulatory impact factor (RIF) of transcriptional factor (TF) between normal prostate and primary
prostate cancer samples.

TF RIF score Rank
HLF 2452584.845 1
ZNF423 2426499.614 2
LMO2 2423023.814 3
FOXF2 1765570.618 4
BPTF 1748870.266 5

Table 4. Regulatory impact factor (RIF) of transcriptional factor (TF) between primary prostate cancer and
metastatic cancer samples.

TF RIF score Rank
JUND 4507642 1
FOSB 3974856 2
FOXO03 3212461 3
MZF1 2841575 4
EGR1 2122338 5

The maximum values, which result in the greatest differences in gene expression be-
tween normal prostate and primary prostate cancer, are displayed in Figure 2A and include
values for 5 TFs and 29 target genes. Similarly, the maximum values for gene expression
changes between primary and metastatic prostate cancer are displayed in Figure 2B and in-
clude values for 2 TFs and 7 target genes.

A . B N

Figure 2. Regulatory impact factor of transcriptional factor (TF) between normal prostate, primary prostate and

metastatic cancer samples. A. Benign vs primary cancer. B. Primary vs metastatic cancer. Circular points = targets
genes; square points = TF genes; red points = differentially co-expressed genes (DCGs); gray points = non-DCGs.
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DISCUSSION

The main objective of our study was to survey molecular variations associated with
prostate cancer to gain new insight into changes in biochemical pathways that might possibly
lead to development of the disease. This was combined with studies of the regulation of TFs
and their target genes in the hope of finding some that could be used prognostically. The data
suggest that it may be possible to predict the clinical behavior of prostate cancer based on gene
expression analysis.

Log ratio of connections is the logarithm of the ratio of the calculated connectivities
of a gene between two conditions (Reverter et al., 2006). Weighted gene co-expression net-
work analyses are increasingly used to explore the system-level functionality of genes whose
construction is conceptually straightforward: nodes represent genes, and nodes are connected
if the corresponding genes are significantly co-expressed across appropriately chosen tissue
samples (Mason et al., 2009; Van Nas et al., 2009). Furthermore, the association of a specific
gene’s expression, such as platelet-derived growth factor receptor (PDGFR), with its outcome
raises the possibility that expression analysis may prove useful in selecting patients for emerg-
ing mechanism-based therapeutics. In contrast, our method, differential co-expression profile,
is based on the exact co-expression relationship between a TF and its targets and identification
of co-expression reversal between normal prostate, primary and metastatic prostate cancer. All
the methods are able to identify DCGs from microarray datasets.

Since 1988, several investigators have used these clinical parameters, such as biopsy
Gleason scores, clinical stage and PSA, to stratify patients into risk groups (low, intermedi-
ate, high) and to predict clinical outcomes (nomograms) (Kattan et al., 1998; D’ Amico et al.,
2000; Partin et al., 2001). Microarray-based tumor classification (Golub et al., 1999; Welsh et
al., 2001), as well as treatment response and clinical outcome prediction (Dhanasekaran et al.,
2001; Van’t Veer et al., 2002), have been employed for many cancer types. In this study, we
have further characterized the expression and prognostic value of differential expression. The
expression of PDGFR is associated with the growth of metastatic prostate tumor cells, which
conformed the hypothesis that PDGFR contributes to prostate cancer progression (Chott et al.,
1999). Attempts to build a gene expression-based predictor of recurrence of prostate tumor fol-
lowing prostatectomy led to build a model that can correctly predict the outcome of DCG and
DCL, which play important roles in the progression of primary or metastatic prostate cancer.

Multivariate analysis was performed to examine whether these results were indepen-
dent of the Gleason score, a well-established histological grading system for prostate cancer
(Gleason, 1992). Bibikova et al. (2007) used the expression signature to predict disease relapse.
They searched the candidate genes from publicly reported lists of genes differentially expressed
in prostate cancer. Therefore, our article served as a detailed extension of previous studies. This
study demonstrated that the relationship between TFs and their targets can be considered a key
factor determining the difference between primary and metastatic prostate cancer.

It is well known that co-transcriptional regulation (or gene amplification) of PIM1
and MYC possibly mediate a synergistic oncogenic effect on prostate cancer (Buttyan et al.,
1987; Abate-Shen and Shen, 2000). Three E-twenty-six (ETS) transcription factors AR, ERG
and ETV1 were identified as outliers in prostate cancer across prostate cancer-profiling stud-
ies, and these results implicate the important role of TFs and their target genes in molecular
diagnosis and treatment (Tomlins et al., 2005; Wang et al., 2007). Consistent with the roles
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of GATA2 and Octl in target gene expression (Tsai and Orkin, 1997), our data indicate the
functions of the maximum values of gene expression in normal prostate, primary and meta-
static prostate cancer.

Recently, microRNA (miRNA) expression-profiling studies have identified cancer-
specific miRNA signatures (Akao et al., 2006; Cummins et al., 2006). Surprisingly, very little
is known about the regulation of expression. Transcriptional regulation is complex and var-
ied. In addition to TFs as a part of transcriptional regulation, miRNA was considered as an
important common and efficient mechanism (Volinia et al., 2006). Consistent with the roles
of GATA2 and Octl in androgen target gene expression, silencing these two collaborating
transcription factors significantly decreased androgen-induced cell cycle progression (Tsai
and Orkin, 1997). If we can select an expression microarray for miRNA, the pathogenesis of
prostate cancer may be revealed at the transcriptional level.

In conclusion, we predicted that DCG and DCL play important roles in disease pro-
gression to primary or metastatic prostate cancer. In addition, the regulatory relationship was
considered a key step in the pathogenesis of prostate cancer. By making direct comparative
hybridizations for normal and neoplastic tissues, we identified 5 TFs and 29 target genes im-
portant in the transition from normal cells to primary prostate cancer and 2 TFs and 7 target
genes important in the transition between primary and metastatic prostate cancer.
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