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ABSTRACT. Insulin-like growth factors (IGFs) are regulators that 
modulate the proliferation and differentiation of muscle tissues. We 
quantified the messenger RNA (mRNA) expression of IGF-I, IGF-II, 
and type I and II IGF receptors (IGF-IR and IGF-IIR) in muscle tissues 
including the breast, leg, and myocardium during an early postnatal 
development growth stage (post-hatching weeks 1-8) in ducks. The 
results showed a significant age-related change in mRNA in these 
muscle tissues. In breast muscle, the developmental expression of 
IGF-I and IGF-II was highest during week 1 but decreased quickly 
and maintained a relatively lower level. Leg muscle had the highest 
mRNA expression of IGF-I and IGF-II genes at week 3. In myocardial 
tissues, the expression level of IGF-IR and IGF-IIR genes exhibited a 
“rise-decline” developmental trend. The expression patterns of IGF-I/
IGF-IR and IGF-II/IGF-IIR were different between weeks 4 and 6. The 
same expression pattern was observed for IGF-I and IGF-IR; however, 
it was different from that observed for IGF-II and IGF-IIR. Our results 
showed a negative correlation between IGF-II mRNA expression and 
leg muscle weight at week 4 (P < 0.05). A negative correlation was also 
found between IGF-II mRNA expression and breast muscle weight (P < 
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0.01), and a positive correlation was found between IGF-IR expression 
and breast muscle weight. At week 6, a positive correlation was found 
between IGF-IR expression and breast muscle weight. However, at 
week 8, a negative correlation was found between IGF-IR expression 
and breast muscle weight. The results showed that the expression of IGF 
mRNA in duck tissues exhibits a specific developmental trend and an 
age-related pattern, suggesting that the regulation mechanism of these 
4 genes in proliferation and differentiation of muscle tissues differed.

Key words: Insulin-like growth factors; Muscle tissue; 
Expression pattern

INTRODUCTION

The insulin-like growth factor (IGF) system, consisting of 2 growth factors (IGF-I and 
IGF-II), 2 IGF receptors [IGF-IR and IGF-IIR/cation-independent mannose 6-phosphate recep-
tor (M6PR)], and 7 IGF-binding proteins (IGFBP1-7), has been characterized as an important 
regulatory system for controlling tissue growth and development in vertebrates (Richards et al., 
2005; Castigliego et al., 2010; Wu et al., 2011). IGF can regulate cellular proliferation and differ-
entiation through the endocrine and auto/paracrine systems (Jones and Clemmons, 1995; Sim-
men et al., 1998; Liu and LeRoith, 1999; Xu et al., 2012). The expression of IGF system genes 
has been studied throughout development in many mammalian tissues including liver, muscle, 
bone, reproductive organs, and the central nervous system (Huybrechts et al., 1985; Allan et al., 
2001; Dupont and Holzenberger, 2003; Brown et al., 2009; Harris and Westwood, 2012).

In mammals, IGF-I is thought to play an important role in mediating the effects of 
growth hormones on tissue growth during postnatal development, whereas IGF-II reportedly 
functions primarily during embryonic growth and development (Scanes et al., 1989; Duclos 
et al., 1999; Dupont and Holzenberger, 2003; Richards et al., 2005). IGF-IR, which exhibits 
tyrosine kinase activity, plays a key role throughout development in birds by regulating the 
growth and differentiation of a variety of tissues, including those of the central nervous system 
(Holzenberger et al., 1996, 2000). One report has highlighted the effects of development and 
nutritional status on the expression of IGF-I, IGF-II, IGF-IR, IGFBP2, and IGFBP5 genes in 
various avian tissues (McMurtry and Brocht, 1997; McMurtry, 1998; Allan et al., 2001). Un-
like mammalian cells, chicken cells do not express a second IGF receptor type (type 2 IGF 
receptor) with a selective specificity for IGF-II (Duclos et al., 1991; Lu et al., 2009). Chicken 
muscle satellite cells, like cells in other chicken tissues, express a unique IGF receptor (type 1 
IGF receptor, or IGF-IR) with similar high affinities for human IGF-I and IGF-II and a low af-
finity for insulin (Duclos et al., 1991; Lu et al., 2009). IGFs can also stimulate muscle differen-
tiation by upregulating the transcription of myogenin (Florini et al., 1991; Tiffin et al., 2004).

However, less knowledge is available about the developmental characteristics of IGFs 
in animal muscle tissues, especially during the early postnatal growth stage. Nevertheless, the 
postnatal developmental stage is critical for muscle hypertrophy. The IGFs have been shown 
to regulate body and muscle growth in chickens (Pym et al., 1991; Frost and Lang, 2003; 
Heinemeier et al., 2012; Lunetta et al., 2012), but no comparisons of different muscle tissues 
have been published. The duck is an ideal animal model to research the expression characteris-
tics of IGF system genes during the postnatal early growth stage because muscle hypertrophy 
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and development in ducks is highly concentrated during the postnatal stage. Therefore, in this 
study we used a quantitative real-time polymerase chain reaction (qRT-PCR) technique to 
investigate and compare the expression patterns of IGF-I, IGF-II, IGF-IR, and IGF-IIR genes 
in breast muscle, leg muscle, and myocardial tissue during the postnatal early development 
growth stage in ducks to determine the essential roles of IGFs during this stage.

MATERIAL AND METHODS

Animals

We used Pekin ducks at different ages (1, 2, 3, 4, 5, 6, 7, and 8 weeks) provided by the 
farm for experimental poultry breeding at Sichuan Agricultural University. The animals were 
killed, and breast muscle, leg muscle, and myocardial tissues were collected and weighted. Tissue 
samples were snap-frozen in liquid nitrogen and then stored at -80°C for total RNA extraction.

RNA isolation and cDNA synthesis

Total RNA was isolated from the breast muscle, leg muscle, and myocardial tissues of 
ducks using the TRIzol reagent (Invitrogen, USA) according to manufacturer instructions. The 
quality of RNA was determined using the A260/280 absorbance ratio (1.6-1.8), and the integrity 
of the 18S and 28S ribosomal RNA bands was assessed on a 1% agarose gel. DNase treatment 
was conducted to remove genomic DNA from total RNA before reverse transcription. cDNA 
was synthesized using 1 μg total RNA from each sample with a cDNA synthesis kit (TaKaRa, 
Japan).

qRT-PCR assay for relative expression of IGFs

Duck mRNA sequences of β-actin (EF667345), 18S rRNA (AF173614), IGF-I 
(DQ168593), IGF-II (JQ819263), IGF-IR (JX041184), and IGF-IIR (JX041185) were re-
trieved from GenBank. Primers were designed using Primer Premier 5.0 (Table 1) and synthe-
sized by TaKaRa Biotechnology Co. Ltd (Dalian, China). PCR amplification was performed in 
a final volume of 10 μL containing 5 μL Master mix (TakaRa Biotechnology Co. Ltd.), 0.3 μL 
10 μM of each primer, and 3.6 μL double-distilled water. The amplification conditions were as 
follows: 1 cycle of 3 min at 94°C; 35 cycles of 30 s at 94°C, 40 s at the respective annealing 
temperature of each primer pair (see Table 1), and 45 s at 72°C; and a final extension of 8 min 
at 72°C. The authenticity of the amplified fragment was verified through sequencing.

Primer name Primer sequence (5'-3') Annealing temperature (°C) Product length (bp)

IGF-I-F ATCCAGCAGTAGACGCTTACACC 61 117
IGF-I-R CGTGCAGACTTAGGTGGCTTTA  
IGF-II-F CAGTGGGACGAAATAACAGGA 59 115
IGF-II-R CGCTCAGACTTGACGGACTT  
IGF-IR-F GGTATTCCACCTCACTCTCCT 60 160
IGF-IR-R AACTTCCTTCACAACTCCATCT  
IGF-IIR-F TGCTGCTTGCTTGATACACGA 56 194
IGF-IIR-R GTTCTCCTCTCTTTGATGGGCA  
β-actin-F CAACGAGCGGTTCAGGTGT 60   92
β-actin-R TGGAGTTGAAGGTGGTCTCG  
18S rRNA-F TTGGTGGAGCGATTTGTC 60 129
18S rRNA-R ATCTCGGGTGGCTGAACG

Table 1. Primers employed for quantitative RT-PCR.
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Expression levels of mRNAs were measured with qRT-PCR by using an IQ5 (Bio-Rad, 
USA) with 96 wells and a TaKaRa ExTaqTM RT-PCR Kit and SYBR Green dye (TaKaRa). The 
qRT-PCR was performed in a volume of 12.5 μL containing 6.25 μL SYBR® Premix Ex TaqTM 
II, 0.25 μL 10 μM of each primer, and 1 μL cDNA. The cycling procedure consisted of an 
initial denaturation cycle for 10 s at 95°C and 40 cycles of 5 s at 95°C, 30 s at 60°C, and a final 
extension at 68°C for 3 min. To verify the absence of nonspecific amplification, we performed 
melting curve analysis after the completion of RT-PCR. The melting protocol consisted of 
heating from 55° to 95°C at a rate of 0.5°C per step, and each step was held for 4 s for data 
acquisition. Standard curves were generated using a 10-3-10-10 dilution series template of PCR 
product for the β-actin, 18S, IGF-I, IGF-II, IGF-IR, and IGF-IIR genes. The 2-DDCT method of 
quantification (Livak and Schmittgen, 2001) was used to calculate the expression of the target 
genes relative to the housekeeping genes: β-actin (EF667345) and 18S rRNA (AF173614) (Li 
et al., 2010).

Statistical analyses

All data were analyzed using the SPSS statistical software (version 13.0, SPSS Inc., 
USA). To evaluate general gene expression at postnatal development weeks 1-8, we used the 
univariate procedure of the generalized linear model (with developmental age and strain as 
fixed factors and a target gene as the development variable), in which the Duncan multiple 
range test option was selected. Data of ontogenic changes of gene expression in 4 genes (IGF-
I, IGF-II, IGF-IR, and IGF-IIR) were subjected to one-way analysis of variance followed by 
the Duncan multiple range test to compare the means. Significance for differences was set at P 
≤ 0.05. The Pearson correlation coefficient was used to characterize the relationship between 
gene mRNA expression and muscle tissue (breast, leg) weight.

RESULTS

Expression levels of IGF system genes in duck muscle tissues during the postnatal 
development stage

IGF mRNA expression was detected in 3 muscle tissues (Figure 1). In breast muscle, 
IGF-I and IGF-II expression was the highest at week 1, and then decreased quickly and stayed 
at a relatively lower level. IGF-IR and IGF-IIR expression was relatively low at week 1 and 
increased progressively. The leg muscle had the highest mRNA expression of the IGF-I and 
IGF-II genes at week 3. In myocardial tissue, the expression of the IGF-IR and IGF-IIR genes 
exhibited a “rise-decline” development trend.

Expression patterns of IGF genes in various duck tissues

The developmental mRNA expression patterns of the IGF system genes during the 
early postnatal development growth stage in ducks were analyzed. The expression patterns of 
IGF-I and IGF-IR and of IGF-II and IGF-IIR in breast muscle (Figure 2A), leg muscle (Figure 
2B), and myocardial tissue (Figure 2C) were compared.
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Figure 1. Expression of IGF system genes in different duck muscle tissues. A. Relative expression of IGF-I (A1), 
IGF-IR (A2), IGF-II (A3), and IGF-IIR (A4) in breast muscle. B. Relative expression of IGF-I (B1), IGF-IR (B2), 
IGF-II (B3), and IGF-IIR (B4) in leg muscle. C. Relative expression of IGF-I (C1), IGF-IR (C2), IGF-II (C3), and 
IGF-IIR (C4) in myocardial tissue, and we chose the first data of week 1 age in every tissue as control. Different 
letters are significant different (P < 0.05). Continued on next page
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Figure 1. Continued.

Continued on next page

A4

B1

B2



C.-L. Song et al.

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 12 (4): 4500-4514 (2013)

4506

Figure 1. Continued.
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Figure 1. Continued.
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Figure 2. Expression of IGF genes in different tissues of duck. A. Expression pattern comparison between IGF-I, 
IGF-IR, IGF-II, and IGF-IIR in breast muscle. B. Expression pattern comparison between IGF-I, IGF-IR, IGF-II, 
and IGF-IIR in leg muscle. C. Expression pattern comparison between IGF-I, IGF-IR, IGF-II, and IGF-IIR in 
myocardial tissue.
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The expression patterns in these muscle tissues differed. As shown in Figure 2, the ex-
pression of IGF-IR was relatively higher than that of IGF-I in all of the tissues, except the leg 
muscle, and the expression of IGF-IIR was relatively higher than that of IGF-II in all 3 tissues.

In breast muscle, the expression of IGF-IR was relatively higher than that of IGF-IIR 
at week 3. After week 3, the mRNA expression level of IGF-IR declined quickly, whereas 
mRNA expression of IGF-IIR increased. During week 4, the expression of IGF-IIR was rela-
tively higher than that of IGF-IR. The expression of IGF-IIR was the highest among these 4 
genes after week 4. In leg muscle, the expression level of IGF-I was higher than that of IGF-
II before week 4, and the expression level of IGF-IR was also relatively higher than that of 
IGF-IIR. In myocardial tissue, the expression patterns of IGF-I and IGF-IR and IGF-II and 
IGF-IIR were roughly the same before week 4; however, they differed during weeks 4 and 6. 
IGF-I and IGF-IR exhibited a similar expression pattern, which both increased and declined. 
However, the expression of IGF-II and IGF-IIR was different, exhibiting a pattern in which 
IGF-II expression increased when IGF-IIR expression declined and vice versa.

Correlation coefficients between duck muscle tissue weight and mRNA expression 
of IGFs during the postnatal period of ducks

The results showed that at week 4, IGF-II mRNA expression was negatively corre-
lated with leg muscle weight (P < 0.05). IGF-IIR expression was also negatively correlated 
with breast muscle weight (P < 0.01). IGF-IR expression was positively correlated with breast 
muscle weight but negatively correlated with breast muscle weight at week 8. IGF-IR expres-
sion was positively correlated with leg muscle weight at week 6. Table 2 shows the correlation 
coefficients between duck muscle tissue weight and mRNA expression of IGFs from week 4 
to week 8 in ducks.

Gene    Pearson’s correlation

  BMW   LMW

    4 weeks 6 weeks 8 weeks   4 weeks 6 weeks 8 weeks

IGF-I   0.182 -0.625   0.228 -0.911 -0.026 -0.613
IGF-IR   0.679   0.026 -0.917 -0.044   0.761 -0.952
IGF-II  -0.937 -0.955 -0.926     -1.000* -0.971 -0.835
IGF-IIR     -1.000** -0.699   0.925 -0.947 -0.789 -0.892

*P < 0.05, **P < 0.01.

Table 2. Correlation coefficients between breast muscle (BMW) and leg muscle weight (LMW) and IGF mRNA 
expression during postnatal period of ducks.

DISCUSSION

A specific, separate expression pattern exists for IGF system genes in duck leg 
muscle, breast muscle, and myocardial tissues

IGFs play a critical role in myogenesis as well as in the regeneration and hypertrophy 
of muscles in adult vertebrates. Myogenesis is a highly ordered process. During embryonic 
development, the muscle precursor cells commit to myogenic linage. After a period of prolif-
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eration, the myoblasts withdraw from the cell cycle, express muscle-specific genes, and even-
tually fuse with each other to form multinucleated myotubes (Buckingham et al., 2003; Duan 
et al., 2010). The expression of IGF-I system genes during skeletal muscle formation and 
hyperplasia is well understood, but few reports have described their expression in the post-
natal early development growth stage. Yet this stage is critical for muscle tissue hypertrophy. 
In this study, we examined the expression patterns of IGF system genes during the postnatal 
early developmental growth stage in ducks. Breast muscle displayed the highest expression of 
IGF-I mRNA at week 1. It then declined, consistent with the observations of other researchers; 
for example, Yun et al. (2005) reported a dramatic decline in IGF-I expression in the breast 
muscles of Korean native Ogol chickens. These results suggest that the endocrine actions of 
IGF-I are more important than auto/paracrine actions in early postnatal growth in ducks.

IGF-II regulates cellular proliferation and differentiation through the endocrine and 
auto/paracrine systems. Previous studies by Radecki et al. (1997) have shown that the mRNA 
and protein expression of IGF-II declines and exists at low levels during postnatal growth in 
chickens. In our study, the duck breast muscle had the highest IGF-II mRNA at week 1 and 
then declined to a relatively lower level. Lu et al. (2009) have also reported that IGF-II mRNA 
expression decreased progressively from postnatal day 0 to postnatal day 42 in chickens, 
which is consistent with the results of other reports (Spencer et al., 1995, 1996; Richards et 
al., 2005). All of these findings suggest that IGF-II does not regulate growth after the postnatal 
period in birds.

IGF-IR expression in breast muscle is strong during the early postnatal period in 
chickens and then decreases (Yun et al., 2005). Our results showed that breast muscle dis-
played the highest expression the IGF-IR mRNA at week 3. Then, the expression of IGF-IR 
mRNA declined. Duclos et al. (1991) have reported that the highest expression of IGF-IR in 
chickens occurs at week 3.

IGF-IIR/M6PR is ubiquitously expressed in cells and tissues in chickens (Hawkes and 
Kar, 2004). We found that in myocardial tissue, IGF-IIR mRNA expression was the highest at 
week 4, but in breast muscle, IGF-IIR mRNA expression was the highest at week 8. These findings 
suggested that IGF-IIR mRNA expression was both tissue specific and developmentally regulated.

Expression patterns of IGF-I/IGF-IR and IGF-II/IGF-IIR differ

To characterize the expression of IGF genes further, we analyzed the expression pat-
tern of IGF-I/IGF-IR and IGF-II/IGF-IIR in the 3 muscle tissues. The expression of IGF-IR 
was relatively higher than that of IGF-I in all of these tissues except leg muscle, and the ex-
pression of IGF-IIR was relatively higher than that of IGF-II in all tissues examined. In birds, 
IGF-I and IGF-II act as endocrine or paracrine/autocrine signals with physiological effects that 
are mainly mediated by their binding to a common receptor (IGF-IR) (McMurtry and Brocht, 
1997). Researchers have reported that physiological conditions such as fasting (during which 
circulating IGF-I levels decline) result in unregulated expression of IGF-IR in rats (Liu and 
LeRoith, 1999; Bondy and Cheng, 2004). Evock-Clover et al. (2002) have found an inverse 
relationship between IGF-I and IGF-IR expression in skeletal muscle in response to a 48-h 
fast during the postnatal period in turkeys and 3-week-old broiler chickens (Evock-Clover 
et al., 2002). Matsumura et al. (1996) have reported that a 5-day fast of 4-week-old chickens 
increased liver IGF-IR mRNA approximately 2-fold but that brain levels failed to change 
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(Duclos, 2005). We determined that IGF-IR expression upregulated IGF-I expression in breast 
muscle, leg muscle, and myocardial tissue, suggesting that IGF-IR can upregulate IGF-I ex-
pression in muscle tissues.

IGF-IIR is structurally and functionally distinct from IGF-IR. IGF-IIR also acts as an 
M6PR. Although the biological actions of IGF-II are mainly mediated through IGF-IR, IGF-II/
M6PR participates in not only the clearance of extracellular IGF-II but also intracellular lyso-
somal enzyme transport. The synthesis of IGF-II is relatively growth hormone independent. 
Its expression is much higher during fetal development than during postnatal periods. IGF-II/
M6PR is ubiquitously expressed in cells and tissues, but some studies have demonstrated that 
its expression is both tissue specific and developmentally regulated (Hawkes and Kar, 2004; 
Velayudhan et al., 2007; Vardatsikos et al., 2009). We observed that during the early growth pe-
riod, IGF-IIR expression upregulated IGF-II in breast and leg muscle, but in myocardial tissue, 
the expression pattern of IGF-II and IGF-IIR was different, exhibiting increased IGF-II expres-
sion when IGF-IIR expression declined and vice versa. Thus, the specific factors that influence 
the expression of IGF-I/IGF-IR and IGF-II/IGF-IIR in various duck tissues remain unclear, and 
more research is required to understand the regulation of these genes in avian species.

A correlation exists between muscle tissue weight and IGF gene expression

At present, several studies have reported positive or negative correlations between cir-
culating IGF-I concentration and body growth in chickens (Hwa et al., 1998; Beccavin et al., 
2001; Lu et al., 2009). Conlon and Kita (2002) have suggested that IGF-I infusion would in-
crease muscle protein degradation as well as protein synthesis in fasted chicks. Lu et al. (2009, 
2010) reported that IGF-I (P0-P42) is negatively correlated with breast muscle weight (BMW). 
Our results revealed that IGF-I mRNA expression was negatively correlated with BMW at 
week 6. Negative correlations were also found between IGF-I mRNA expression and leg mus-
cle weight (LMW). However, at weeks 4 and 8, a positive correlation was found between IGF-I 
mRNA expression and BMW. These conflicting results have suggested that the association of 
IGF-I with the body growth of chickens depends on strain, nutrition, age, and sex.

Yun et al. (2005) have reported that the concentration of breast muscle IGF-II is nega-
tively correlated with body growth at weeks 3 and 7, in contrast to the results of previous 
studies (Spencer et al., 1996; Yun et al., 2005; Llewellyn et al., 2007). Our results showed 
that IGF-II mRNA levels were negatively correlated with BMW and LMW, and especially 
that IGF-II mRNA levels were negatively correlated with LMW at week 4 (P < 0.05). All 
these studies have shown that IGF-II has no effect on growth rate. In growing cattle, a posi-
tive correlation has been reported between the accretion rate of the longissimus muscle and 
the number of type I IGF receptors (r = 0.52) (Vestergaard et al., 2003). In chicken, there 
was a negative correlation between IGF-IR (P0-P42) and BMW (Lu et al., 2009). Our results 
showed that IGF-IR mRNA levels were positively correlated with BMW at week 4, negatively 
correlated with BMW at week 8, and positively correlated with LMW at week 6. This study 
is the first to investigate the correlation between IGF-IIR and BMW and LMW in birds. Our 
results showed that IGF-IIR mRNA levels were negatively correlated with BMW and LMW 
from weeks 4 to 8.

We investigated the expression of IGF system genes in duck muscle tissues during the 
early development growth stage. We discovered that mRNA expression of the 4 IGF genes has 
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tissue-specific characteristics and are developmentally regulated. These findings suggested 
that the potential roles for these genes in regulating muscle hypertrophy and development dif-
fer in ducks. These results may guide the direction of future molecular regulation mechanism 
studies of IGF gene expression in ducks.
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