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ABSTRACT. MicroRNAs (miRNAs) are short, non-coding RNA 
molecules that play an important role in the world of genes, especially 
in regulating the gene expression of target messenger RNAs through 
cleavage or translational repression of messenger RNA. Ab initio 
methods have become popular in computational miRNA detection. 
Most software tools are designed to distinguish miRNA precursors 
from pseudo-hairpins, but a few can mine miRNA from genome or 
expressed sequence tag sequences. We prepared novel testing datasets 
to measure and compare the performance of various software tools. 
Furthermore, we summarized the miRNA mining methods that study 
next-generation sequencing data for bioinformatics researchers who 
are analyzing these data. Because secondary structure is an important 
feature in the identification of miRNA, we analyzed the influence 
of various secondary structure prediction software tools on miRNA 
identification. MiPred was the most effective for classifying real-/
pseudo-pre-miRNA sequences, and miRAbela performed relatively 
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better for mining miRNA precursors from genome or expressed 
sequence tag sequences. RNA-fold performed better than m-fold for 
extracting secondary structure features of miRNA precursors.

Key words: MicroRNAs; Ab initio methods; Pseudo-hairpins;
Next-generation sequencing; Secondary structure

INTRODUCTION

MicroRNAs (miRNAs) are non-coding RNAs that play important roles in gene 
regulation by targeting mRNAs for cleavage or translational repression (Carrington and 
Ambros, 2003; Huang et al., 2007). In animals, miRNAs are initially transcribed as longer 
primary transcripts called pri-miRNAs and then processed by RNase III Drosha (Borchert 
et al., 2006) into 60- to 70-nt miRNA precursors (pre-miRNA) (Lee et al., 2003; Zeng 
et al., 2005). Pre-miRNA is transported from the nucleus to the cytoplasm by exportin-5 
and cleaved into 21- to 25-nt mature miRNA. In plants, pri-miRNAs are cleaved into ma-
ture miRNA by Dicer-like 1 protein and transported from the nucleus to the cytoplasm by 
HASTY (Park et al., 2005; Li et al., 2007). The precursor of the miRNAs has the charac-
teristics of stem-loop hairpin structures (Huang et al., 2010). miRNAs play an increasingly 
important role in the regulation and control of biological processes in organisms such as 
the larvae growth sequence (Moss et al., 1997; Reinhart et al., 2000) and cell proliferation 
(Brennecke et al., 2003; Huang et al., 2011a).

One of the most extensively developed methods for miRNA detection is the com-
parative approach, which depends primarily on sequence similarity to known pre-miRNAs. 
Lower sensitivity in detecting novel miRNAs is the main drawback; another drawback is 
the generation of false positives. To overcome these obstacles, researchers have increas-
ingly turned to ab initio prediction methods. These methods predict miRNAs in a single 
genome without using conservation of structure or comparative sequence analysis. The 
number of non-conserved miRNAs is estimated to be relatively large (Bentwich et al., 
2005), which enables the identification of completely novel miRNAs for which no close 
homologs are known. Unlike comparative genomics approaches, ab initio approaches dis-
cover species-specific miRNAs without known sequence homology, and many of these 
algorithms have recently been developed to detect novel pre-miRNAs for which no close 
homology is known. Bioinformatics play an important role in the research of miRNA; Fig-
ure 1 shows the prediction process for miRNA.

Many software tools have been released for the prediction of miRNAs. Summariza-
tion and comparison of the best-known software are carried out to help researchers choose ef-
fective software for miRNA prediction in experimental and public DNA data. The comparison 
presented herein provides a deeper understanding of various identification software tools to 
allow appropriate choices based on needed strengths, such as accuracy rate or specificity. The 
direction of experiments is taken into account simultaneously. We performed several experi-
ments to compare various software and methods. The advantages and disadvantages of the 
software are presented based on aspects such as dataset accuracy rate. Our results are highly 
reliable because we obtained and compared data from a large number of experiments instead 
of relying on speculation and research.
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Figure 1. Predict process of miRNA.
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MATERIAL AND METHODS

The highly species- and time-specific expression patterns of ab initio methods make 
them popular in detecting a mass of non-conserved miRNAs. Unlike comparative genomics 
approaches, ab initio approaches can discover species-specific miRNAs without known ho-
mology sequences (Huang et al., 2011b), which has spurred the development of multiple ab 
initio methods for miRNA prediction.

Herein, we introduce the main ab initio methods with the goal of analyzing the work-
ing accuracy of the algorithms instead of understanding their working mechanisms. We intend 
for users to be able to select a method for their experimental data according to the information 
we offer. Various methods are categorized and summarized according to their purposes and 
processes in miRNA identification.

Classifying miRNA precursors from pseudo-hairpins

miRNA precursor sequences can fold into a typical stem-loop structure considered 
to be the most important indicator of the maturation process; however, a large number of 
similar hairpins that are not pre-miRNAs can be found in many genome regions and are 
called pseudo-hairpins (Bentwich et al., 2005). Accurately distinguishing, classifying, 
and identifying miRNA precursors from pseudo-hairpins is difficult. Most of the current 
methods for the computational prediction of miRNAs make use of comparative genomic 
approaches to identify pre-miRNAs from candidate hairpins. Because distinguishing 
pre-miRNAs among hairpin secondary structures is extraordinarily difficult; the 
development of ab initio methods to distinguish pre-miRNAs from pseudo-pre-miRNA-
like hairpin segments is crucial. Several of the main pre-miRNA software tools are 
summarized below.

MiPred

Pre-miRNAs can be distinguished from other hairpin sequences with MiPred. Ran-
dom forest improves the accuracy, and 32 triplet structure-sequence features as well as mini-
mal free energy (Hofacker, 2003) and P value of free energy are used to describe the sample. 
MiPred reached a sensitivity of 89.35% and a specificity of 93.21% on a test set (Jiang et al., 
2007). Given a sequence, MiPred determines whether it is a pre-miRNA-like hairpin. If it is, 
the random forest classifier predicts and shows whether it is a pre-miRNA or a pseudo-hairpin. 
Additional information such as minimum free energy of the secondary structure and the P 
value of the randomization test are given.

microPred

microPred presents an effective classifier with appropriate machine learning tech-
niques. The approach in microPred includes the introduction of more representative datasets, 
extraction of new biologically relevant features, feature selection, handling of class imbalance 
problems in datasets, and extensive classifier performance evaluation via systematic cross-
validation methods (Batuwita et al., 2009). 
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Virgo

Virgo functions based on sequence and structure features. A support vector machine 
(SVM) trained on sequence-structure feature elements is used for efficient discrimination be-
tween miRNA precursor hairpins and pseudo-miRNA hairpins. The method is more efficient 
than that of other ab initio methods for predicting viral and mammalian miRNAs (Kumar et 
al., 2009). Virgo selects a model with maximum specificity (rather than sensitivity) and uses 
the Radial Bias Function kernel of the SVM to create a function corresponding to the hyper-
surface that optimally separates true and pseudo-miRNA hairpins. The method is fast enough 
for viral genome-wide predictions and can be helpful in the discovery of both novel non-
conserved and virus-expressed miRNAs.

Triplet-SVM

Triplet-SVM classifies real- and pseudo-microRNA precursors using local structure-
sequence features and SVM. An SVM classifier trained based on the triplet element features 
of a set of real-miRNA precursors and a set of pseudo-miRNA hairpins is used to analyze 
and predict the triplet elements of the query. Triplet-SVM runs directly on Linux with a Perl 
compiler. The SVM classifier that built on human data can correctly identify up to 90% of the 
pre-miRNAs (Xue et al., 2005) from other species without using any comparative genomics 
information, and 32 triplet structure sequence characteristics were used to describe the sample 
to construct Triplet-SVM. It reached a sensitivity of 93.3% and a specificity of 88.1% on a test 
set (Xue et al., 2005).

Mining miRNA precursors from genome or EST sequences

Ab initio methods that mine miRNA precursors from genome or ESTs do not depend 
entirely on known genetic sequence information but use it as training set to extract features 
and then make use of a machine-learning classification algorithm to identify candidate clips. 
Current research shows that the secondary structure of noncoding miRNA remains unaltered. 
For instance, the hairpin secondary structure of miRNA precursors and the distribution of 
nucleotides have certain rules (Zou et al., 2011) that can be discerned by studying known 
miRNA genes and their precursors; these rules can be used to classify unknown RNA and 
judge whether it is miRNA. Several major ab initio mining software tools for miRNAs are 
summarized below.

miRAlign

Most approaches detect novel miRNAs according to the conservation of whole pre-
miRNA sequences or the nearly perfect match of mature parts of the sequence, but miRAlign 
is distinct from other search tools in 2 main ways (Wang et al., 2005): it can find distant 
homologs according to the relatively loose conservation of the mature sequence, and it 
considers additional properties of miRNA structure conservation. MiRAlign performed 
with higher sensitivity than and comparable specificity to those of other homolog searching 
methods, and 59 novel miRNA genes were detected (Wang et al., 2005).
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miRAbela

Research has shown that miRNAs are occasionally found in clusters. Consequently,  
miRAbela focuses on genomic regions around already known miRNAs. It uses a growing set 
of mammalian sequences that have been cloned in the laboratory of Thomas Tuschl to evaluate 
the performance of the method. Cross-species comparisons are used in the methods to make 
conservative estimates of the number of novel miRNAs, and the species-specific identity and 
genome organization of miRNA loci can be studied because each genome is analyzed sepa-
rately. miRAbela reached a sensitivity of 71% and a specificity of 97% on a training set (Sewer 
et al., 2005). Thirty-two possible pre-miRNAs were predicted in a test of virus miRNA in 
which 13 pre-miRNAs had been verified experimentally (Sewer et al., 2005).

miRPara

miRPara is a software tool that predicts the most probable mature miRNA-coding 
regions from genome-scale sequences in a species-specific manner. miRPara uses an SVM to 
train 3 models based on an initial set of 77 parameters (Wu et al., 2011), and these parameters 
are related to the physical properties of pro-miRNAs and their miRNAs. Given a genome se-
quence, miRPara locates miRNA-coding regions, and high-throughput screening experiments 
can use miRPara as a pre-screening step.

MIReNA

MIReNA can find miRNAs at the genome scale and from deep sequencing data without 
the machine learning that can confirm only pre-miRNAs that look like known pre-miRNAs. 
MIReNA explores a multidimensional space defined by only five parameters to identify pre-
miRNA/miRNA pairs. In addition, the MIReNA algorithm can handle four kinds of data 
(known miRNAs, deep sequencing data, potential miRNAs occurring in long sequences, and 
putative pre-miRNAs containing potential miRNAs) (Mathelier and Carbone, 2010), and the 
first two kinds of data may be checked against full-genome sequences.

MiRscan

Together with molecular identification and validation methods, MiRscan can identify 
most of the miRNA genes in the nematode Caenorhabditis elegans (Lim et al., 2003). For the 
identification of miRNAs in nematodes, the C. elegans genome was first scanned for hairpin 
structures with sequences that were conserved in C. briggsae. Fifty published miRNA genes 
served as a training set for MiRscan. MiRscan was then used to assign scores to each of the 
hairpins and evaluate them for similarity to certain features of the training set. It indentified 30 
novel miRNAs in C. elegans and 38 novel human miRNAs (Lim et al., 2003).

ProMiR II

ProMiR (http://bi.snu.ac.kr/ProMiR/) uses a hidden Markov model (Nam et al., 2005) 
to describe the real- and pseudo-pre-miRNA. ProMiR II is a general version of ProMiR that 
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searches for miRNA in stem-loop sequences. Low- or high-stringency prediction of conserved 
and non-conserved miRNA genes is allowed because, unlike ProMiR, ProMiR II adjusts sev-
eral filtering criteria such as free-energy data, G/C ratio, conservation score, and entropy of 
candidate sequences (Nam et al., 2006). ProMiR II generates a list of nearby potential miRNAs 
according to score and filtering criteria. Additional services, such as the prediction of miRNA 
genes in long unrelated sequences such as viral genomes, are also provided. An MySQL data-
base that structures the data improves the efficiency of data analysis.

BayesMiRNAfind

BayesMiRNAfind may be applicable to a wide variety of eukaryotes. It differs from 
other tools in two ways: 1) it generates a model automatically from the training data and 
identifies rules based on the miRNA gene structure and sequence, allowing prediction of non-
conserved miRNAs, and the training data consist of sequence and structure information of 
known miRNAs from a variety of species. 2) It integrates data from multiple species for 
miRNA gene prediction and performs a comparative analysis over multiple species to reduce 
the false-positive rate. Using this classifier combined with a structure feature such as the length 
of species and the conservation of genome in humans and dolphins, the program predicted 533 
possible pre-miRNAs, of which 135 are already known in the normal chain of the mouse 
genome (Yousef et al., 2006).

Mining miRNA from next-generation sequencing (NGS) data

A new generation of sequencing technologies (such as deep sequencing) has pro-
vided unprecedented opportunities for high-throughput detection of miRNAs and can detect 
many small RNAs with a high degree of reliability. NGS has made possible high-sensitivity 
discovery of tissue-specific and developmental stage-specific miRNAs and miRNAs ex-
pressed at low levels (Ruby et al., 2006; Friedlander et al., 2008). NGS data from Illumina/
Solexa, ABI/SOLiD, and 454/Roche produce several sequence fragments in the 200- to 300-
bp range and detect known and novel miRNAs with unprecedented sensitivity (Friedlander 
et al., 2008). Several major mining methods of miRNAs from NGS data are summarized 
below.

miRDeep

miRDeep uses a probabilistic algorithm to score features of miRNA candidates with 
Bayesian statistics. Its accuracy and robustness originate in published C. elegans data and 
data generated from deep-sequenced human and dog RNAs. The miRDeep algorithm excises 
the genomic DNA bracketing these alignments and computes their secondary structure after 
the sequencing reads are aligned to the genome. Plausible miRNA precursor sequences are 
identified and then scored for their likelihood to be real-miRNA precursors in the core part of 
the algorithm. miRDeep reported ~230 previously unannotated miRNAs, of which four novel 
C. elegans miRNAs were validated with Northern blot analysis (Friedlander et al., 2008). A 
scored list of known, novel precursors, mature miRNAs in the deep-sequencing sample, and 
estimates for the number of false positives was shown as the output.
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miRanalyzer

miRanalyzer implements a variety of methods for integrated analysis of deep-
sequencing experiments of small RNA molecules. The small RNA data obtained with NGS 
platforms such as Illumina or SOLiD are processed by miRanalyzer. miRanalyzer implements 
a highly accurate machine learning algorithm based on the random forest classifier and is 
trained on experimental data for the prediction of new miRNAs. The output website (http://
web.bioinformatics.cicbiogune.es/microRNA/) shows tables of detailed information. 
miRanalyzer provided the number of predicted miRNAs and predicted new miRNAs numbers 
in the candidate miRNAs, reaching area under the curve value of 97.9% and recall value 
of up to 75% on unseen data (Hackenberg et al., 2009) for the prediction of new miRNAs. 
Resources for the ab initio approaches for miRNA prediction are shown in Table 1.

Software	 Website	 References

MiPred	 http://www.bioinf.seu.edu.cn/miRNA/	 Jiang et al., 2007
microPred	 http://web.comlab.ox.ac.uk/people/ManoharaRukshan.Batuwita/microPred.htm	 Batuwita et al., 2009
Virgo 	 http://miracle.igib.res.in/virgo/	 Kumar et al., 2009
Triplet-SVM	 http://bioinfo.au.tsinghua.edu.cn/mirnasvm/	 Xue et al., 2005
MiRAlign	 http://bioinfo.au.tsinghua.edu.cn/miralign/	 Wang et al., 2005
miRAbela	 http://www.mirz.unibas.ch/cgi/pred_miRNA_genes.cgi	 Sewer et al., 2005
miRPara	 http://159.226.126.177/mirpara/cgi-bin/form.cgi	 Wu et al., 2011
MIReNA	 http://www.ihes.fr/~carbone/data8/	 Mathelier and Carbone, 2010
MiRscan 	 http://genes.mit.edu/mirscan/	 Lim et al., 2003
ProMiR II	 http://cbit.snu.ac.kr/~ProMiR2/	 Nam et al., 2006
BayesMiRNAfind	 http://wotan.wistar.upenn.edu/miRNA/	 Yousef et al., 2006
miRDeep	 http://www.mdc-berlin.de/rajewsky/miRDeep	 Friedlander et al., 2008
miRanalyzer	 http://bioinfo2.ugr.es/miRanalyzer/miRanalyzer.php	 Hackenberg et al., 2009

Table 1. Resources of the ab initio approaches for miRNA predictions.

RESULTS

The comparative study used to evaluate the software falls into three categories: 1) 
comparison of various miRNA precursor classifiers, 2) comparison of mining performance, 
and 3) influence of various RNA fold-software.

Data preparation

The evaluation of platform accuracy was based mainly on a known test dataset. Our 
test set included positive and negative datasets, and these were used for the comparative study. 
The positive dataset consisted of 1700 positive miRNA sequences that were either experimen-
tally supported or obtained from the literature; they were actual pre-miRNAs. The positive 
dataset helped identify the number of true positives and false negatives, which are explained 
below, to define a series of evaluation criteria such as sensitivity, specificity, and accuracy for 
each software tool. The negative dataset consisted of 1700 negative miRNA sequences with 
stem-loop structures similar to those of miRNAs but not reported as pre-miRNAs (Zuker, 
2003). The negative dataset helped identify the number of true negatives and false negatives, 
also explained below, to define a series of evaluation criteria similar to those determined using 
the positive dataset.
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Comparison of various miRNA precursor classifiers

The positive and negative datasets were used to test the software, and we compared 
miRNA precursor classifiers by analyzing their outputs. Some important standards defined to 
evaluate the software are as follows:

Number of true positives (NTP): the number of experimentally supported miRNA 
precursors predicted by a program. Number of false positives (NFP): the number of nega-
tives predicted by a program. Number of true negatives (NTN): the number of negatives not 
predicted by a program. Number of false negatives (NFN): the number of experimentally sup-
ported miRNA precursors not predicted by a program.

Other standards used to evaluate the performance of the predictive software products 
were sensitivity, specificity, and accuracy. These standards are always defined based on the 4 
above-mentioned standards and are calculated as follows:

Accuracy = (NTP + NTN) / (NTP + NTN + NFP + NFN) * 100
Specificity = NTN / (NTN + NFP) * 100
Sensitivity = NTP / (NTP + NFN) * 100

The comparison of the four classifiers based on real-/pseudo-miRNA precursors is 
shown in Table 2.

Software	                          Positive data		                           Negative data		  Sensitivity (%)	 Specificity (%)	 Accuracy (%)

	 NTP	 NFN	 NTN	 NFP

microPred	 1591	 109	   260	 1440	 93.59	 15.29	 37.51
MiPred	     73	   17	     62	     28	 81.11	 68.89	 75.00
Virgo	   931	 408	 1080	   506	 69.52	 68.10	 68.75
Triplet-SVM	 1007	 283	   442	   307	 78.06	 59.01	 71.41

Table 2. Comparison of four classifiers based on real-/pseudo-miRNA precursor.

Of the four softwares for the classification of real- and pseudo-pre-miRNAs, micro-
Pred was more sensitive in identifying pseudo-precursor miRNAs (93.59%), whereas Virgo 
was less sensitive (69.52%). The specificity of MiPred was as high as 68.89% compared to the 
15.29% specificity of microPred. Although microPred had the highest sensitivity but relatively 
low accuracy owing to the lower specificity, the sensitivity of both microPred and MiPred 
were relatively large but because of the high specificity of MiPred, its overall accuracy was 
higher. Hence, MiPred is more effective than the other tools for classifying miRNA precursors.

Comparison of mining performance

Given a sequence, the software tools can mine probable miRNA. The total number of 
miRNAs contained in the gene sequence was known in advance. We chose part of chromo-
some 14, cds1 and cds2, as our test set. We then compared the performance of the various 
mining software tools according to the number of miRNAs mined from the sequence and 
the number of true miRNAs contained in the mining miRNA. The standard of performance 
consisted of precision and recall. We acquired useful information through the experimental 

NTP = number of true positives; NFN = number of false negatives; NTN = number of true negatives; NFP = number 
of false positives.
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method and provide a detailed list of all softwares. The pre-miRNAs predicted by the various 
software tools are shown in Table 3. 

We can get the precision by dividing the number of predicted putative pre-miRNAs by 
positives in the putative pre-miRNAs. The rate of accuracy can also be calculated: precision = 
number of positives in the putative pre-miRNAs / number of predicted putative pre-miRNAs. 
Recall can be calculated: recall = number of positives in the putative pre-miRNAs / number 
of known pre-miRNAs.

Software	 No. of predicted	 No. of known	 No. of positive in	 Precision (%)	 Recall (%)
	 putative pre-miRNAs	 pre-miRNAs	 putative pre-miRNAs

MiRAlign	 16	 25	 14	 87.50	 56.00
miRAbela	 16	 26	 15	 93.75	 57.69
MIReNA	 38	 42	 27	 71.05	 64.29

Table 3. Real pre-miRNAs predicted by different softwares.

Of the software considered for mining miRNA, both miRAlign and miRAbela had 
high precision and similar recall, with miRAbela being relatively higher (93.75%). The recall 
of MIReNA was as high as 64.29% compared to the 56-58% recall of miRAlign and miRAbela. 
We concluded that miRAbela has better precision, whereas MIReNA performs better in recall. 
We then compared these two software tools from the perspective that they mined miRNA 
incorrectly in cds, as shown in Figure 2.

Figure 2. Pre-miRNAs predicted by different softwares.

miRAbela is superior to MIReNA and performed relatively well from this perspec-
tive. Other prediction software that mine miRNA precursors from genome or ESTs is sum-
marized in Table 4.
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Influence of various RNA-fold softwares

The secondary structure of RNA (the base pair set for an RNA molecule) provides 
a scaffold for the tertiary structure (Zou et al., 2009). Yet the experimental determination 
of RNA structure remains difficult, and most researchers turn to computational meth-
ods. To date the most popular structure prediction algorithm is the minimum free-energy 
method for folding a single sequence. This algorithm has been implemented in two pack-
ages: m-fold (Zuker, 2003) and RNA-fold (Hofacker, 2003). RNA-fold (Sankoff et al., 
1983; Zuker, 1989a,b) computes a single-minimum energy folding of an RNA sequence. 
The m-fold software was developed in the late 1980s (Zuker, 1989b). The m simply refers 
to multiple. In the prediction of a single sequence, both RNA-fold and m-fold use the 
dynamic programming method to calculate minimum free energy, so the forecast effect 
is approximate. Most of the prediction software above uses RNA-fold to fold the miRNA 
secondary structure.

To analyze the influence that the various secondary structure prediction software has 
on the recognition of miRNA, we choose Triplet-SVM as the analysis object from among the 
prediction software, as shown in Figure 3. The Triplet-SVM classifier runs directly on Linux 
with a Perl compiler, and this package requires a third-party software - namely RNA-fold and 
Libsvm. Therefore, we used RNA-fold and m-fold to fold the secondary structure of miRNA 
and then trained and tested the software with our test set. Our experiments showed that with 
the same training set and classification software, different secondary structure prediction soft-
ware tools produce different effects in the predicting outcomes. With Triplet-SVM, RNA-fold 
yields better results.

Software	 Online website	 Local	 Online	 Others
		  service	 service

miRPara	 http://159.226.126.177/mirpara/cgi-bin/form.cgi	 √	 √	 The result page cannot open after jumping
				    from the home page
MiRscan	 http://genes.mit.edu/mirscan/	 √	 	 Internal server error, web page cannot open
ProMiR II	 http://cbit.snu.ac.kr/~ProMiR2/	 	 √	 Web page cannot open
BayesMiRNAfind	 http://wotan.wistar.upenn.edu/miRNA/	 	 √	 Web page cannot open
miRDeep	 http://www.mdc-berlin.de/rajewsky/miRDeep	 √	 	 Local service: the miRDeep package was
				    developed to discover active known or novel 
				    miRNAs from deep sequencing data. Besides
				    Perl, the Vienna package and Randfold 
				    application are required in the users’s Linux 
				    box. Also needed is BLAST.
miRanalyzer	 http://bioinfo2.ugr.es/miRanalyzer/miRanalyzer.php	 √	 √	 Online service: the web server tool requires 
				    a simple input file containing a list of unique 
				    reads and its copy numbers. The users could 
				    choose to predict just new miRNA or just 
				    predict known miRNA in the input parameters 
				    optional. The output website shows some tables 
				    of detailed information. It provides the number 
				    of predicted miRNAs and predicts new miRNA 
				    numbers in the candidate miRNAs.
				    Local service: besides the miRanalyzer,
				    package should be installed, other packages	
				    like Weka and Vienna RNA package should 
				    be installed first. It is not convenient for the 
				    users to use the programs.

Table 4. Some other prediction softwares were compared as follows.
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DISCUSSION

Many ab initio methods have been developed to predict miRNAs. Parts of the meth-
ods based on 3 characteristics of miRNA gene identification tools have been compared to un-
derstand their relative performance. Among the methods, MiPred performs best for classifying 
miRNA precursors from pseudo-hairpins, and miRAlign displayed superior performance in 
mining miRNA precursors from genome or ESTs. One class approach can be a good alterna-
tive, but for overall accuracy, improvements need to be incorporated for better performance. 

Most prediction software tools currently predict novel miRNAs according to the 
structure and properties of a small number of known miRNAs, but little is known about 
miRNAs, and the existing methods have no general applicability, so the prediction effect is not 
one of confidence. To explore and reveal the mystery of miRNA further, more in-depth research 
is needed. In addition, the development of NGS technologies is central in the prediction and 
discovery of novel miRNAs.
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Figure 3. Prediction accuracy of Triplet-SVM that uses different RNA-fold softwares.
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