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ABSTRACT. When a low activity of acid α-glucosidase (GAA) is 

found, particularly in newborn screening programs, to differentiate α-

glucosidase pseudo deficiency from true Pompe disease is important and 

urgent, as the result generates parental stress and also because this 

differentiation drives decisions related to the management of the case. 

Here, we report a case of GAA pseudo deficiency detected in a newborn 

screening performed by a private laboratory in Brazil. The confirmatory 

laboratory investigation performed at our service showed reduction of 

GAA activity on the dried blood spot, with inconclusive results when 

GAA activity was assayed in leukocytes. Genotyping of the GAA gene 

with next-generation sequencing revealed the common pathogenic 

mutation c.-32-13T>G and the “pseudo deficiency allele” p. 

[Gly576Ser; Glu689Lys], each one in heterozygous state and in trans. 

This report illustrates the need of newborn screening programs to have 

the adequate support to perform a comprehensive investigation 

whenever an abnormality is found in the initial screening test. 
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INTRODUCTION 

Pompe disease (PD, OMIM 232300) is an autosomal recessive lysosomal disorder (LD) caused by mutations in 

the GAA gene (17q) that encodes the lysosomal enzyme α-glucosidase (GAA, EC 3.2.1.20). GAA is responsible 

for glycogen degradation within lysosomes and its deficiency leads to accumulation of lysosomal glycogen 

especially in cardiac and skeletal muscle (Hirschhorn and Reuser, 2001). To date, over 550 distinct variations in 

GAA have been identified, although not all are considered pathogenic (www.pompecenter.nl). A specific enzyme 

replacement therapy was developed for Pompe disease, and is already approved in many countries (Chien and 

Hwu, 2007). 

 

There is a worldwide interest in newborn screening (NBS) for LDs that, like PD, are amenable by enzyme 

replacement therapy as increasing evidence shows that early treatment intervention results in better outcomes 

(Chien and Hwu, 2007, 2013). However, some factors affect the detection of PD, including the presence of carriers 

and pseudo deficiency. The so-called pseudo deficiency allele p.[Gly576Ser; Glu869Lys], or c.[1726A; 2065A], 

causes, in homozygous state, reduction of GAA activity, which could be as low as the observed in patients affected 

by PD, but does not lead to the development of the disease (Tajima et al., 2002, Labrousse et al., 2010).  We 

report here a case that illustrates the challenge of adequately classifying the patient with GAA deficiency as Pompe 

disease or pseudo deficiency, as this has a very important impact in the decision about the therapeutic measures 

to be taken. 

 

PATIENT AND METHODS 
 

Case report 

 
The male patient is the first child of a young and non-consanguineous couple. His father has diagnosis of type I 

Diabetes Mellitus. He was born by C-section after an uneventful pregnancy. His birth weight was 3175g, length 

50 cm, OFC 33 cm and Apgar score 9 at first minute.   At 4 days old, a routine newborn screening test was 

performed at a private laboratory and showed GAA activity below the lower reference range (patient: 4.4 

µmol/L/hour; reference value: >5.9). The patient was referred to the Medical Genetics Service of HCPA for further 

investigation as described below. He evolved with normal motor development, held his head at 4 months old and 

walked unsupported at 11 months old.  

 

Biochemical studies 
 

GAA activity in the DBS was performed using a digital microfluidics platform for multiplexing enzyme assays 

(Neto et al, 2017). GAA activity in leukocytes was assayed with the substrate 4-methylumbelliferyl-α-D-

glucoside, as previously reported (Li et al., 2004).  GAA activity of parents’ patient was assayed as well. For the 

assays in leukocytes, β-galactosidase was assayed as reference enzyme (Suzuki, 1977). 

 

Molecular Genetic studies 
 

Peripheral blood sample was collected in tubes containing EDTA. DNA was obtained from blood samples by 

standard procedures (Millet et al., 1988). All coding exons (exons 2 through 20) and as well as the flanking 

intron/exon junctions (20pb) of the GAA gene were sequenced using next-generation sequencing method on Ion 

Torrent PGM platform employing a prior validated NGS panel that includes the GAA gene. The results were 

visualized in the Integrative Genomics Viewer (IGV) v2.3 (Broad Institute) and Ion Reporter Software v5.0 

(Thermo Fisher Scientific). Parental segregation of the mutations was also determined by Sanger sequencing, 

using primers developed by Oba-Shinjo et al. (2009).  

 

RESULTS 
 

Enzyme analysis 

 
GAA activity in the patient’s leukocytes was 0.96 ± 0.03 nmol/h/mg protein, very close to the lower reference 

limit [reference range: 1.0-7.6] (Figure 1). GAA activities of the parents’ leukocytes were within normal range 
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(mother: 2.7; father: 1.9).  Activity of β-galactosidase in leukocytes, assayed as a reference enzyme, was within 

normal range in all cases, confirming that the samples were adequate. 

 
Figure 1. GAA activity in leukocytes. Pompe: results in Pompe patients previously diagnosed; Present report: ○, mother; □ father; ● 

patient; Normal: Normal reference range. 

 

 

 
 

 

 

Molecular genetic analysis 

 
After sequencing the entire coding sequence and splice sites of the GAA gene, we identified 3 heterozygous 

variants when compared with reference sequence NM_001079804.1: the mutation c.-32-13T>G (rs386834236) 

in the intron 1 and the missense mutations p.Gly576Ser (c.1726G>A) (rs1800307) and p.Glu689Lys (c.2065G>A) 

(rs1800309) in exon 12 e 15, respectively (Figure 2). These mutations were also confirmed by Sanger sequencing. 

Parental analysis of the mutations determined that variant c.-32-13T>G was inherited from the father and c. 

[1726A; 2065A] (or p.Gly576Ser; Glu689Lys]) from the mother, both being heterozygous for the respective 

mutations.  
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Figure 2. Identification of mutations by NGS panel, as visualized in Integrative Genomic Viewer (top panel) and confirmed by Sanger 

sequencing (bottom panel). A, c.-32-13T>G. B, c.1726G>A (p.G576S). C, c.2065G>A (p.E689K) in GAA. 

 

 
 

These three variants are well-described in the literature as pathogenic or causative of pseudo deficiency. 

Nonetheless, we present in Table 1 the in-silico analyses results using SIFT, Polyphen-2, CADD, Mutation Taster, 

and Human Splicing Finder v.3 as pathogenicity prediction tools (Kumar et al., 2009, Adzhubei et al., 2010, 

Schwarz et al., 2014, Desmet et al., 2009).  

 

 

Variant Clinvar 
In silico Pathogenicity Prediction Tools 

SIFT Polyphen-2 CADD Mutation Taster HSF 

c.-32-13T>G Pathogenic N.A N.A N.A Disease causing Modifier 

p.Gly576Ser Bening/ Likely bening 79% 81% 82% Polymorphism N.A 

p.Glu689Lys Bening/ Likely Bening/Pathogenic 82% 73% 65% Polymorphism N.A 

 
Note: N.A: not applicable, HSF: Human Splicing Finder. 

 

DISCUSSION 
 

Differentiation between Pompe disease and GAA pseudo deficiency is crucial for reaching a correct diagnosis 

and taking a decision about the introduction of enzyme replacement therapy, available in many countries, 

including Brazil. Although it is present in less than 1% of babies in the United States, frequency of pseudo 

deficiency allele can by quite high in some populations (3.9% in Japan and 3.3% in Taiwan) (Kemper, 2013, 

Labrousse et al., 2010, Kumamoto et al., 2009). Data on pseudo deficiency frequency for the Brazilian population 

are not available. Positive results in NBS require second-tier confirmation to address false-positive results. 

Biochemical assay of the enzyme activity in leukocytes provides additional data, but molecular analysis of the 

GAA gene was needed to discriminate between PD and pseudo deficiency.   

 

We used a prior validated NGS panel (analytical sensitivity of 100%) that includes GAA and other genes associated 

with different lysosomal disorders (LDs). NGS panels proved to be a valid method to genotype samples of 

suspected patients, in addition to being rapid, accurate and cost effective. The GAA intronic variant detected in 

our patient (c.-32-13T>G) is the most common variant causing late-onset PD (~40-70% of the alleles), and it is 

Table 1. In silico analysis of GAA three variants found in our patient, using different 

prediction tools. 
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well-described as pathogenic (Huie et al., 1994a, Boerkoel et al., 1995). This variant causes three aberrant spliced 

transcripts: the partial or complete exon 2 skipping and a leaky wild-type splicing, which allows a low level of 

GAA activity, preventing the most severe classic infantile form of PD and leading to a childhood/adult phenotype 

(Boerkoel et al., 1995, Dardis et al., 2014, Bergsma et al., 2015). Even though variants p.Gly576Ser and 

p.Glu689Lys, when analyzed independently, presented inconsistent results after in silico analysis for predicting 

pathogenicity as well as conflicting interpretation of pathogenicity at Clinvar, it has been reported that 

p.Gly576Ser reduces the GAA activity by about ~80%, while p.Glu689Lys results in 50% of normal GAA 

activity. The combined effect of both variants, p.[Gly576Ser, Glu689Lys] is like the effect of p.Gly576Ser alone 

(Kroos et al., 2008). 

 

Our results were consistent with previous findings in NBS programs, indicating that newborn with mutation 

heterozygosity, pseudo deficiency homozygosity without GAA mutations and pseudo deficiency heterozygosity 

with and without a GAA mutation, present GAA activity significant lower than in controls, but could be 

distinguished from patients with Pompe disease, with few exceptions (Labrousse et al., 2010, Scott et al., 2013). 

Heterozygotes for the pseudo deficiency allele (like patient´s mother) are not at risk for developing PD. However, 

it has been hypothesized that in some cases the pseudo deficiency allele could modify the effect of another 

mutation (i.e. p.D645E, p.W746C, p.W746X) (Labrousse et al., 2010, Kroos et al., 2008). It has also been 

suggested that compound heterozygotes with one p.[Gly576Ser; Glu689Lys] allele and one pathogenic allele may 

develop a “Pompe-like” disease symptoms late in life due to the very low GAA activity, being a medical follow-

up recommended (Kroos et al., 2008). 

 

Our finding, and the fact that an individual homozygous for the pseudo deficiency allele was already reported in 

Brazil (Turaça et al., 2015) suggests that this allele is present in our population.  This report of GAA pseudo 

deficiency detected by newborn screening illustrates and reinforces the need that such programs have a 

comprehensive protocol including further biochemical and genetic analysis, to provide a final diagnosis to the 

cases who had a positive result in the initial screening test. This process should be fast and efficient, as it was in 

the present case, in order to avoid parental stress in the false-positive cases and to enable the prompt start of 

therapy in confirmed cases.  
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