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ABSTRACT. The analysis of transcriptional temporal noise could be
an interesting means to study gene expression dynamics and stochasticity
in eukaryotes. To study the statistical distributions of temporal noise in
the eukaryotic model system Saccharomyces cerevisiae, we analyzed
microarray data corresponding to one cell cycle for 6200 genes. We
found that the temporal noise follows a lognormal distribution with scale
invariance at the genome, chromosomal and sub-chromosomal levels.
Correlation of temporal noise with the codon adaptation index suggests
that at least 70% of all protein-coding genes are a noise minimization
core of the genome. Accordingly, a mathematical model of individual
gene expression dynamics was proposed, using an operator theoretical
approach, which reveals strict conditions for noise variability and a pos-
sible global noise minimization/optimization strategy at the genome level.
Our model and data show that minimal noise does not correspond to
genes obeying a strictly deterministic dynamics. The natural strategy of
minimization consists in equating the mean of the absolute value of the
relative variation of the expression level (α) with noise (η). We hypoth-
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esize that the temporal noise pattern is an emergent property of the
genome and shows how the dynamics of gene expression could be re-
lated to chromosomal organization.
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INTRODUCTION

Genomes consist of interdependent informational units (genes) arranged sequentially in
linear structures (chromosomes), which compose a larger ensemble. Cellular and organismal
levels of life are, therefore, emergent properties of this ensemble. At the root of this emergence
is transcription and translation, the information flow from genes to proteins leading to higher
order structures with increasing complexity (Adami et al., 2000). Transcription and translation
could be viewed as an information transmission channel affected by noise. Accordingly, several
studies have addressed transcriptional and translational noise and stochastic mechanisms of
gene expression either in prokaryotes or eukaryotes (Elowitz et al., 2002; Blake et al., 2003).
Microarray data have been used to investigate the large-scale organization of gene expression
and have revealed the complex networks of gene activity (Tong, 2004; Davierwala et al., 2005;
Pan et al., 2005). Genome-wide analyses have demonstrated a gene expression dynamics, con-
served from Escherichia coli to Homo sapiens, in which gene expression changes are propor-
tional to their initial expression level (Ueda et al., 2004). The initial expression level, however,
varies from cell to cell. This variability is inevitable in biological systems and can result in very
different synthesis rates of a specific protein in genetically identical cells living in essentially
identical environments (Elowitz et al., 2002; Ozbudak et al., 2002; Blake et al., 2003). The
coefficient of this variation is designated noise. This type of noise could be described as popula-
tional noise since it corresponds to the cell-to-cell stochastic variation in gene expression levels.
Yeast adaptively minimizes noise during the expression of most of its genes. Noise in protein
synthesis (translation noise) is minimized in essential genes and in genes encoding protein com-
plex subunits (Fraser et al., 2004). It is of fundamental importance to describe the basic mechan-
isms of noise and to address the central question of how cells deal with noise. In other words,
how is the noise optimized so that gene expression balances the necessary flexibility for adap-
tive adjustments with its conserved, evolutionarily constrained, mechanisms of control?

Besides the studies that aim to describe mechanistic details of how noise affects gene
expression, it is relevant to note that the gene expression noise could be an emergent property of
the genome or at least could strengthen the concept of a cell as a self-organizing network
(Nicolis and Prigogine, 1977; Kauffman, 1993; Bar-Yam, 2004). Self-organization is a dynami-
cal and adaptive process where systems, generally open systems, acquire and maintain internal
organization structures themselves and where complexity increases without external guidance
or management (Adami, 2002). Self-organizing systems are widely characterized in physics,
chemistry (self-assembly), economics, anthropology (self-organizing behavior), and mathemat-
ics (cellular automata). Because biology deals with scales that vary from the sub-cellular to the
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ecosystem level, the self-organization concept evidently plays a central role in the description of
biological phenomena. According to the theories of hypercycles and autocatalytic networks, the
origin of life itself is a product of self-organizing chemical systems (Eigen, 1971; Ycas, 1999).
Biological systems exhibit increase in order, autonomy, adaptability, feedback controls, and far-
from-equilibrium dynamics, which are signatures of self-organization (De Wolf and Holvoet,
2005). Several, self-organizing, complex behaviors include the formation of lipid bilayer mem-
branes, spontaneous folding of proteins, morphogenesis, and animal social structures. Typically,
self-organizing systems display emergent properties.

The concepts of self-organization and emergence are often used incorrectly as syn-
onyms (De Wolf and Holvoet, 2005). The connection between emergence and self-organization
is a very intriguing scientific problem with deep implications for genome biology. Emergence is
the formation of complex patterns from more elemental parts, or behaviors, constituents of a
system (Anderson, 1972; Bar-Yam, 2004). To be termed emergent, a phenomenon should usu-
ally be unpredictable from a sheer lower level description of the elemental parts and behaviors.
In complex systems, emergence is a central concept, although it is difficult to define and a
matter of debate. The identification and characterization of signatures of self-organization and
emergence using eukaryotic genome data is a wide open area of research and may be essential
to quantitatively understand how the genetic information directs and controls the formation of
cells, bodies and higher-order biological behaviors. Gene expression noise, either populational or
temporal, could be such a signature.

Here, we studied the temporal fluctuations of gene expression during a single-cell cycle,
which we called temporal noise, to discriminate from sheer cell-to-cell stochasticity or popula-
tional noise. The statistical distributions and possible correlations of temporal transcriptional
noise with gene expression level, codon adaptation (Sharp and Li, 1987), essentiality (Davierwala
et al., 2005), and ohnologs (Wolfe and Shields, 1997) by means of whole-genome analysis of the
eukaryotic model system Saccharomyces cerevisiae were made. We found that the noise
follows a lognormal distribution with scale invariance from the genome to the sub-chromosomal
level. Also, we identified a noise minimization core in the yeast genome, which encompasses at
least 70% of the genome. A mathematical model of gene expression was built, using operator
theory, and revealed a possible general genome level strategy for noise minimization/optimization.
These results suggest that this noise minimization strategy is a result of self-organization; the noise
pattern is an emergent property of the genome whose distribution reveals scale invariance.

MATERIAL AND METHODS

Data source

The S. cerevisiae microarray data were obtained from the Saccharomyces Cell Cycle
Expression Database (http://genomics.stanford.edu) and consists of 17 gene expression meas-
urements (equally time-spaced over one cell cycle in synchronized cells) of 6200 genes of S.
cerevisiae, strain K3445 (Cho et al., 1998).

Based on whole-genome systematic deletion data in the Saccharomyces Genome Da-
tabase (http://yeastgenome.org), the set of all genes was divided into two subsets of non-essen-
tial (4683 genes) and essential (1116 genes) genes. Genes where systematic deletion data are
unavailable were excluded from the analysis.
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The list of the 554 ohnolog pairs (genes remaining as duplicates after the whole genome
duplication) was obtained from the Yeast Gene Order Browser project (http://wolfe.gen.tcd.ie/
ygob/) (Byrne and Wolfe, 2005).

The list of genes that are cell cycle regulated was obtained from Spellman et al. (1998).

Calculation of noise

The arithmetic mean expression level (sample mean)  and the corresponding sample
standard deviation S were calculated for each ORF. The transcriptional noise of the expression
signal E

j
(t) of gene j (Elowitz et al., 2002) is defined by

(Eq. 1)

This operational definition of temporal noise, as the relative fluctuation of the expres-
sion level, is quite convenient due to the stochastic aspect of expression dynamics. Moreover,
the intensive character of the variable η allows the clarification of its importance to expression
dynamics. This definition of noise contemplates all possible contributions to transcriptional vari-
ability, from the influence of the feedback-based mechanisms of transcriptional regulation to
intrinsic fluctuations related to the chemical reactions leading to mRNA synthesis. This defini-
tion also allows for theoretical predictions based on the knowledge of the equilibrium density of
the expression level for each gene.

Another relevant parameter to be considered is the mean of the absolute value of the
relative variation of the expression level, defined as:

where j is for each gene, l runs over the set of experimental measurements for each gene, and
n is the total number of measurements per gene in the experiment. The relation between this
parameter and the noise level is important in order to clarify the issue of transcriptional noise
minimization.

RESULTS AND DISCUSSION

Genome-wide analysis

It is a widespread idea that the important issue of gene expression organization in the
genome should be focused on the identification of gene networks related to biological functions.
Therefore, the identification of gene subsets with special properties is appropriate to describe
how genetic information is organized at the genome level in terms of dynamical observables.
Here, we analyze the distribution of temporal transcriptional noise and the expression level at
three different scales: the genome scale, the chromosomal scale and the sub-chromosomal
scale, as determined by the centromere position (chromosome arms). The main goal is to iden-
tify the signature of scale invariance of relevant statistical observables at the three scales de-

(Eq. 2)
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fined above, which is obviously important for the organization of biological information of dy-
namical origin. Because we are looking at dynamical signatures we consider the role of tempo-
ral fluctuations in gene expression and, therefore, cell-to-cell variation, or populational noise, has
to be smeared out so that the population variability does not mask the true temporal fluctuations
(Figure 1). In other words, the microarray data and analysis we used were thus selected so that
it could be said unequivocally that the observables that we considered are typical (statistically
expected) of an individual randomly picked from that population.

At the genome scale both mean expression level (Figure 2A) and noise level (Figure
2B) follow a well-fitted lognormal distribution. Apart from the reasonable argument that the
distribution of chemicals in the cell should assume different forms over the cell cycle, it is also
reasonable to expect the emergence of lognormal (non-Gaussian) statistics in many cell pro-
cesses. Due to chemical cascade effects which enhance the propagation of multiplicative fluc-
tuations, the observed long-tail distribution of noise and mean expression reinforces the hypo-
thesis of the lognormal distribution ubiquity in biological systems (Furusawa et al., 2005).

The distribution of the mean expression level has an algebraic tail with exponent γ ~2,
whose universal character has been observed elsewhere (Ueda et al., 2004). The distribution of
the noise level has an algebraic tail with exponent β ~3, also possibly universal.

Since  and η are lognormally distributed, the corresponding normally distributed vari-
ables are ε = log ( ) and ξ = log (η). The mean values  and  for the whole genome are 
= 5.529 (1.147) and  = -1.421 (0.425). Down to the chromosomal scale, we observed that the
mean values of ε and ξ for each of the 16 chromosomes are all very close to the corresponding
mean values for the whole genome (Table 1). The means of the individual chromosomes have a
very small dispersion (<5%) around the mean value for the whole genome,  = 5.485(0.281)
and  = -1.408(0.057). Therefore, the geometric means of expression level and the noise
level are invariant when rescaling the genome to the chromosome level.

Down to the subdivision of the chromosomes into left and right arms, we observed the
same property. The  and  for both arms are very close to the values for each chromosome
(Table 2 and Figure 3). Therefore, the values of  and  (which are related to the medians of

 and η) are conserved from the genome to the sub-chromosomal scale. The conservation of
 and  over these two scales implies the possible existence of symmetry principles ruling the

distribution of genes in each of the subsets (the chromosome and their corresponding arms).
The question about the existence of biological relevant subsets (networks) of genes at even
lower scales, obeying the same scaling property, remains to be further investigated. Based on
the evidence presented, we conjecture that the location of the centromere is not randomly
chosen, but is constrained to the physical distribution of  and η over the corresponding chro-
mosome. Although very suggestive, the above results should be verified by new experiments.
More accurate measurements of  and η as well as the complete identification of all coding
regions of the genome should be done to corroborate the observed evidence of scale invariance
of  and .

The essentiality problem

Knowing the expression level and noise behaviors at the genome level, we considered
the subsets of essential (Davierwala et al., 2005) and non-essential genes to determine whether
they follow the same statistical and scaling properties of the whole genome.
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Figure 1. Types of noise. In A, we depict the general stochastic cell-to-cell variation of expression levels of a single gene
in synchronized cells, or the populational noise. The symbols (triangles, squares and circles) indicate the different,
individual cells in a hypothetical sample. In B, the temporal noise raw data, as considered in the present study, are an
average of the synchronized population in A which smears out cell-to-cell variation, or populational noise, so that the
population variability does not mask the true temporal fluctuations and allows saying unequivocally that the observables
considered are typical (statistically expected) of an individual randomly picked from that population. K indicates the
random variable of the temporal fluctuation (see Results and Discussion section Equation 3). In C, subtypes of temporal
noise of three different genes, where triangles represent a typical cell cycle-regulated gene, squares a high temporal noise
gene and circles a low temporal noise gene.
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Figure 2. A. Genome-wide probability distribution for the mean expression level. B. Genome-wide probability distribution
for the temporal noise level. C. Probability distribution of the mean expression level for the essential (full circles) and
non-essential (empty circles) genes. D. Probability distribution of the mean expression level for the ohnologs (full circles)
and non-ohnologs (empty circles) genes.

Table 1. Mean temporal noise level and mean expression level for the whole genome and for each chromosome.

SD = standard deviation.

Noise (Ln) Expression level (Ln)

Mean SD Mean SD

Genome -1.421 0.425 5.529 1.147
Chrm 1 -1.230 0.423 5.363 1.134
Chrm 2 -1.372 0.418 5.651 1.141
Chrm 3 -1.358 0.398 5.329 1.162
Chrm 4 -1.436 0.404 5.635 1.113
Chrm 5 -1.415 0.410 5.511 1.153
Chrm 6 -1.426 0.433 5.229 2.818
Chrm 7 -1.492 0.443 5.116 1.117
Chrm 8 -1.448 0.445 5.128 1.170
Chrm 9 -1.429 0.441 4.915 1.176
Chrm 10 -1.383 0.407 5.564 1.136
Chrm 11 -1.437 0.407 5.907 1.054
Chrm 12 -1.416 0.428 5.819 1.133
Chrm 13 -1.401 0.415 5.817 1.056
Chrm 14 -1.434 0.420 5.625 2.964
Chrm 15 -1.430 0.440 5.561 1.095
Chrm 16 -1.422 0.446 5.596 1.085
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Table 2. Mean temporal noise level and mean expression level for both chromosome arms from each chromosome.

L stands for the left arm, and R for the right arm. SD = standard deviation.

Chromosome Chromosome arm Noise (Ln) Expression level (Ln)

Mean SD Mean SD

1 L -1.232 0.427 5.427 1.088
R -1.227 0.422 5.255 1.215

2 L -1.359 0.426 5.864 1.032
R -1.378 0.416 5.569 0.172

3 L -1.334 0.446 5.331 1.182
R -1.374 0.366 5.328 1.154

4 L -1.407 0.454 5.604 1.166
R -1.450 0.379 5.649 1.089

5 L -1.335 0.396 5.023 1.241
R -1.449 0.412 5.368 1.101

6 L -1.450 0.418 4.962 1.249
R -1.397 0.468 5.092 1.059

7 L -1.493 0.445 5.075 1.127
R -1.490 0.441 5.156 1.107

8 L -1.417 0.488 4.857 1.321
R -1.455 0.436 5.188 1.128

9 L -1.412 0.435 4.961 1.217
R -1.502 0.462 4.717 0.967

10 L -1.360 0.402 5.383 1.176
R -1.416 0.412 5.819 1.028

11 L -1.419 0.392 5.959 1.064
R -1.474 0.437 5.794 1.026

12 L -1.363 0.388 5.644 1.131
R -1.424 0.434 5.846 1.133

13 L -1.426 0.430 6.043 1.032
R -1.390 0.409 5.721 1.053

14 L -1.425 0.424 5.657 1.079
R -1.473 0.373 5.477 1.065

15 L -1.379 0.447 5.488 1.061
R -1.451 0.436 5.591 1.108

16 L -1.422 0.457 5.581 1.107
R -1.423 0.433 5.618 1.056

The probability density for the mean expression level of both essential and non-essential
genes is fitted by lognormal distributions with the same tail given by the exponent γ ~2 (Figure
2C). The noise level of the same subsets also follows a lognormal distribution. Therefore, the
subdivision of the genome into essential and non-essential genes preserves the basic statistical
properties of the mean expression level and noise level of the whole genome. Neverthe-
less, the scale invariance observed at the chromosomal and sub-chromosomal levels is
apparently not respected by the subdivision of the genome into essential (  = 5.932(0.936),

 = -1.564(0.394)) and non-essential genes (  = 5.437(1.148),  = -1.398(0.427)). The
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Figure 3. Chromosomal map of temporal noise. A. Chromosome 1 (230,208 bp). B. Chromosome 10 (745,745 bp). C.
Chromosome 4 (1,531,918 bp). C indicates the centromere, and L is for the left arms and R for the right arms of
chromosomes.
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difference observed between the two gene sets is probably due to sample size effect. Note that
the mean of the set of non-essential genes is very close to the genome mean in opposition to the
set of essential genes.

The mean noise of essential genes (0.23) is lower than that of non-essential genes
(0.27). This inequality is inverted if we consider the mean value of the gene expression for these
gene subgroups (565 for essentials and 430 for non-essential genes). However, this distinction is
not statistically significant (these two sets are almost surely indistinguishable). Individual noise
levels of essential and non-essential genes are manifested differently and it is quite easy to
identify in the data examples of the inequality η

ess
 > η

ness
 with high statistical significance. This

indicates that the inequality η
ess

 < η
ness

 is only true in terms of mean values. Because the same
holds for the chromosomal and sub-chromosomal scales, we hypothesize that a clear separation
of essential and non-essential genes by noise minimization, and likely by mean expression maxi-
mization, is perhaps the case for genes belonging to specific networks (lower scale) of the
genome, related to specific biological functions.

Ohnologs

Molecular evidence suggests that S. cerevisiae is a result of whole-genome duplication
that occurred after the divergence of genus Saccharomyces from genus Kluyveromyces, ap-
proximately 108 years ago (Wolfe and Shields, 1997), which left approximately 17% of the S.
cerevisiae genes as duplicates (ohnologs). The probability density of the mean expression level
of the ohnolog and non-ohnolog subsets is well fitted by lognormal distributions (Figure 2D),
although the tail has an exponent γ = 1.38 ± 0.15 in the ohnolog subset, and γ = 2.67 ± 0.14 in the
non-ohnolog subset. The scale invariance observed at the chromosomal and sub-chromosomal
levels is apparently not respected by the subdivision of the genome into ohnolog (  = 5.799(1.277),

 = -1.288(0.432)) and non-ohnolog genes (  = 5.465(1.104),  = -1.451(0.418)).
Therefore, the division of the genome into ohnolog and non-ohnolog subsets does not preserve
the statistical properties of the whole genome, and does not follow the scaling properties de-
scribed in the previous section. Therefore, it is not wrong to conclude that the natural principles
involved in the selection of the genes that retained ohnologs versus the ones that lost their
ohnologs are different from those involved in the assignment of essentiality.

Correlation between noise and codon adaptation index

The codon adaptation index (CAI) (Sharp and Li, 1987) was originally conceived to be
a genetic parameter relating gene activity and protein abundance. This index is a source of
fundamental biological information despite methodological considerations (Kliman et al., 2003;
Jansen et al., 2003; Drummond et al., 2005).

Here, we explore the relation of CAI with transcriptional noise keeping in mind the
importance of translation for transcriptional regulation (Fraser et al., 2004) and, therefore, for
possible basic mechanisms of transcriptional noise minimization. Using the CAI to sort the
genome, we observed that the genes are separated into subsets of constant CAI, with varying
sizes (from ~10 to ~70 genes each) in the interval 0.100 < CAI < 0.185, which encompasses
~70% of the genome (Figure 4A). Within each of these groups, we observe an internal order
characterized by the relation  = η (Figure 4B,C,D and E). Inside each group of genes,  and
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η follow the same kind of order. The range of variation is approximately the same with the
minimal noise value close to the minimal noise value observed for the whole genome. The
pattern found is very regular especially for CAI ~0.118. Outside of the interval 0.100 < CAI <
0.185, the grouping pattern is not obvious because of fast CAI variation. In this domain, the
relation  ≈ η is only observed in isolated genes, for example, the genes encoding enzymes of
the glycolytic pathway such as TDH2 (glyceraldehyde-3-phosphate dehydrogenase), CIT3 (ci-
trate synthase), PDA1 (pyruvate dehydrogenase) and LPD1 (dihydrolipoamide dehydrogen-
ase). Therefore, it is likely that the property  ≈ η should be valid for at least 70% of the
genome; this would include, for example, the DNA integrity network (Pan et al., 2005). The
identification of possible relations between the observed pattern organization and biological function
is beyond the scope of the present study and is left for further investigation. Nevertheless, the
significance of the property  ≈ η can be elucidated by a simple theoretical model of gene
expression.

Modeling individual gene expression

In order to model the time variation of the expression of a single gene (E
j
 (t)) and to

interpret the experimental results in view of theoretical predictions, we consider the expression

where k
j
 is a random variable (normally distributed) that fluctuates around the mean value  =

0. This assumption is based on the estimated distribution of k
j
 obtained directly from the exper-

imental data. Positive (negative) values of k
j
 describe an increase (decrease) of the expression

level E
j
 (positive defined) whose logarithm varies randomly according to the same distribution of

k
j
. Therefore, one expects the random variable E

j
 to follow a lognormal distribution (Kaneko,

2003; Furusawa et al., 2005).
Equation 3 takes into consideration all causes that affect the expression level. It is

tantamount to mean field-like approximation to the expression of gene j.
To facilitate the analyses of the model and comparison with the experiment, it is conve-

nient to consider the discrete time version of Equation 3 with the parameter α
j
 = k

j
. In the

first approximation the stochastic process k
j
(t) may be restricted to random jumps in time of the

variable α
j
 between the values  and . Therefore, Equation 3 becomes:

(Eq. 3)

where n = 0, 1, 2, ..., (the discrete time variable). This may be written in the form of two discrete
transformations

(Eq. 4)

(Eq. 5)

(Eq. 6)

where .
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Figure 4. A. Correlation between temporal noise and codon adaptation index (CAI). The ORFs were sorted first by
increasing noise level and second by increasing CAI value. A closer view of the pattern showing the noise level (squares)
and the corresponding alpha (triangles) for each gene in a CAI interval is shown in B for CAI 0.100, C for CAI 0.118, D
for CAI 0.130 and E for CAI 0.181.

According to Equations 5 and 6, the time evolution of gene expression is given by the
time series . At each discrete time step, Equation 5 or 6 is randomly chosen to update the
value of the expression level  to the value .

It is easily observed from the experimental data that the values of  typically vary
between a minimal value ( ) and a maximal value ( ) during the cell cycle, characteristic
of each gene. This suggests that the model (Equations 5 and 6) should be restricted to the
interval ( , ). Therefore, depending on the domain of definition and the value of , the
model has three different cases to be considered:
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(i)  .

In this case, the two linear transformations have a common domain in the interval

,

where the dynamics is explicitly probabilistic with equal a priori probabilities. Out of the com-
mon domain the dynamics is deterministic.

(ii) .

In the interval

,

both transformations are not defined and this case, therefore, represents the absence of gene
activity.

(iii) .

This case defines a sharp border between activity and no activity of the gene. Here, gene
expression is fully deterministic.

In the present analyses, it is assumed that the time variation of the expression level does
not have to be the same for the same gene in different cells. At each time (t) the expression level
of gene j may vary across the cell population. Nevertheless, the statistical properties of gene expres-
sion in time should be the same for gene j in any cell of the population (provided that all the
individuals are subjected to the same environmental conditions). Therefore, that the probability
density function of the variable  should be the relevant dynamical signature of gene j.

It is important to stress that there is no proof of the existence of a stable probability
density for , for any gene of the genome. As a first step we assume its existence and
eventually reformulate the hypothesis of statistical stability depending on the model predictions.

The above considerations imply that the model should be studied in terms of the time
evolution of probability density. For each time step, there is a probability distribution of ,
characteristic of the population of cells. The gene expression dynamics is given by the time
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evolution of this probability distribution, which is fully described by the corresponding density
evolution operator. In the present case, the appropriate operator is known as the Perron-Frobenius
operator (Lasota and Mackey, 1998).

In formal terms, we write  (the density function at time n for gene j), U (the

Perron-Frobenius operator for the model), such that . If statistical equilibrium ex-

ists, the equilibrium density is the solution of . If  for two different genes,

statistical equivalence of the two genes should be considered as far as gene expression is
concerned.

Comparing the model with experimental data

This approach allows the analytical deduction of the border of gene expression consid-
ered in case iii. Since we calculated the values of η and  of each gene from the experimental
data, we analyzed the limit case and determined the curve η(α) from the model. The result is
presented in Figure 5A.

By definition, the noise level is given by

As in case iii, the model is fully deterministic, the corresponding Perron-Frobenius
operator can be easily obtained, and it gives the equilibrium density

With the help of Equation 8 one obtains

The curve described by Equation 9 is presented in Figure 5A along with the experimen-
tal data. The curve of Equation 9 separates the diagram η X  into two regions: the left side of
the diagram (referred to case i) and the right side of the diagram (case ii) where no points
should be found. The experimental points that appeared in this region correspond to a) cell
cycle-regulated genes such as CLN1 (G1 cyclin 1), and YOX1 (homeodomain-containing tran-
scriptional repressor), b) ohnolog genes such as KRR1 (essential nucleolar protein required for
the synthesis of 18S rRNA and for the assembly of 40S ribosomal subunit), SOL2 (role in tRNA
export), and CLN1 (G1 cyclin 1) and c) dubious and hypothetical ORFs such as SaYJL195c and
YBR090c. Approximately 25% of the points consist of a and b. The remaining points likely
correspond to data strongly affected by experimental error.

(Eq. 7)

(Eq. 8)

(Eq. 9)
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Equation 9 also indicates a restricted criterium for transcription noise minimization, namely:
for any group of genes with similar values of , minimal transcriptional noise is attained by
those genes having the most deterministic gene expression dynamics.

Figure 5A also shows that the large majority of genes follow the expression dynamics
described in case i. In this case, to obtain analytical results is far more difficult than in the case
of fully deterministic dynamics, and its study is left for future investigation.

Figure 5. A. Diagram of α X η. Essential (red) and non-essential (blue) genes are highlighted. The green curve refers to the
case of deterministic dynamics and represents a boundary of gene activity. B. Noise minimization as a function of α for
the ORF with a given minimal (E

m
) and a maximal (E

M
) expression level.
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Nevertheless, the numerical simulations give relevant information about the organiza-
tion of transcriptional noise at the genome scale. As described in the previous subsection, at
least 70% of the genome (0.100 < CAI < 0.185) follows a clear pattern of groups of approxi-
mately 60 genes with regular variation of the noise level. As previously explained,  ~ η holds
for genes belonging to this group.

To investigate this property, we used the model to determine numerically the relation
between  and η for a fixed interval of the expression level variation. The result of the numeri-
cal simulations is presented in Figure 5B, and it clearly shows that noise is minimized for  ~ η.
A similar curve is obtained for different intervals of the expression level variation.

Therefore, the property  ~ η can be interpreted as a strategy used by ~70% of the
genome to globally minimize the transcriptional noise and consequently minimize the deleterious
effect of the stochastic component of gene expression. In these terms, the property  ~ η may
be seen as a natural strategy of coping with noise. It is important to stress that, as presented in
our manuscript, we consider the role of temporal fluctuations in gene expression, and therefore,
the populational noise, cell-to-cell variation or population variability does not mask the true tem-
poral fluctuations. Although some may object to the use of microarray data for noise studies, we
argue that the microarray data we used allow the unequivocal statement that the observables
that we considered are typical (statistically expected) of an individual randomly picked from that
population.

Our data suggest that there is a difference, at least in part, in the noise level of essential
and non-essential genes, which may indicate the existence of an organizational order constrained
by the maintenance of noise constancy and expression level. We hypothesize that genetic events
that substantially affect this noise are drastic for cell viability, thus setting the boundaries of
biological variability space upon which Darwinian selection will act (Kauffman, 1993). These
would involve scale invariance and symmetry.

The analysis described here suggests a relation involving scale invariance and statistical
equivalence with structural and functional organization of genetic information in terms of tran-
scriptional noise and mean expression level. Scale invariance and statistical equivalence are
properties related to the structural organization of the genome (the division of the genome into
chromosomes and that of the chromosome arms). The existence of similar groups of genes at
lower scales remains to be determined. Essentiality and ohnology are properties related to the
functional organization of the genome. Following this principle the organization in terms of es-
sential and non-essential genes would be, at least in part, structural, but the organization of the
genome in terms of ohnolog and non-ohnolog genes would follow a strictly functional principle.

It can be suggested that the temporal transcriptional noise could be used as a binary
classifier for gene function (a prospective task), using the well-known receiver operating char-
acteristic curve (ROC), in contrast to the investigative analysis proposed in the present study.
The problem of using transcriptional (population or temporal) noise as classifier for gene func-
tion encounters many difficulties and two of them certainly are: 1) the fact that transcriptional
noise is a quantitative observable of the system and gene function is a qualitative property and 2)
how to efficiently deal with massive amounts of data, typical in microarray experiments. To
manage these difficulties, the use of ROC, which is comparable to supervised analysis, should
be compared with the results of clustering methods, more often currently used. As an example,
the use of the Super-paramagnetic Clustering (unsupervised) Method to identify cell cycle-
regulated genes, using the same data we considered in our study, was reported by Getz et al.
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(2000), showing good results when compared to the original works of Eisen et al. (1998), and
Spellman et al. (1998). Nevertheless, the central goal of our study was the identification of
dynamical signatures that provide evidence of the temporal organization of transcriptional infor-
mation, its multiscale properties and its relation to special groups of genes of biological interest,
such as essential genes, ohnologs and genes that have the same codon adaptation index. We
conclude that in this perspective the mechanism of temporal transcriptional noise minimization,
identified with the property  ~ η, is not related to functional or structural aspects. It would be
an emergent property of dynamical nature related to the global network architecture of the
genome.
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