Online journal IS5N - 1676-5680 1 I I | | i
(A D) D A D e L e T DAL

/_1“ /r _. D Genetics and Molecular Research
_—} o S)-—)-- _— 1 -

An I/0 device driver for bioinformatics tools:
the case for BLAST

Renato Campos Mauro and Sérgio Lifschitz

Departamento de Informética PUC-RIO,
Pontificia Universidade Catdlica do Rio de Janeiro,
Rua Marqués de S@o Vicente, 225 Gévea,
22453-900 Rio de Janeiro, RJ, Brasil
Corresponding author: S. Lifschitz

E-mail: sergio@inf.puc-rio.br

Genet. Mol. Res. 4 (3): 563-570 (2005)
Received May 20, 2005

Accepted July 8, 2005

Published September 30, 2005

ABSTRACT. There are many bioinformatics tools that deal with input/
output (I/O) issues by using filing systems from the most common oper-
ating systems, such as Linux or MS Windows. However, as data vol-
umes increase, there is a need for more efficient disk access, ad hoc
memory management and specific page-replacement policies. We pro-
pose a device driver that can be used by multiple applications. It keeps
the application code unchanged, providing a non-intrusive and flexible
strategy for I/O calls that may be adopted in a straightforward manner.
With our approach, database developers can define their own I/O man-
agement strategies. We used our device driver to manage Basic Local
Alignment Search Tool (BLAST) I/O calls. Based on preliminary ex-
perimental results with National Center for Biotechnology Information
(NCBI) BLAST, this approach can provide database management sys-
tems-like data management features, which may be used for BLAST
and many other computational biology applications.

Key words: BLAST, Driver, Databases

Genetics and Molecular Research 4 (3): 563-570 (2005) ©FUNPEC-RP www.funpecrp.com.br

R.C. Mauro and S. Lifschitz 564
INTRODUCTION

There are many tools for bioinformatics. Most of them involve reading data from text
files or from binary files, always accessed directly from the operating system. This nostalgic
scenario leads us to remember the era before the widespread use of database management
systems (DBMS). Biological databases are increasing exponentially and efficient data manipu-
lation is necessary.

Operating systems provide efficient data access, including buffer management and
caching techniques. However, operating system algorithms were designed for a wide range of
application classes, in order to achieve good performances for average applications, not for
specific ones. Every application is viewed as a system process, with no particular characteris-
tics taken into account. Consequently, an efficient computational resource management special-
ized for bioinformatics applications is a very important research issue. The challenges for man-
aging the required computational resources include efficient secondary memory organization,
appropriate access methods and specific buffer management policies. Particularly, the DBMS
research area is concerned with specialized data management techniques that enable good
performance.

We propose an operating system device driver, which developers can use to implement
their own data management approach, such as an ad hoc buffer page replacement policy. The
main difficulty to transform these experimental results into an actual implementation is the fact
that current implementations are not easy to change in order to manage all input/output (I/O)
calls. Even when this is possible, users would have to change their current (stable and reliable)
software versions and migrate to the modified versions. Our approach is to keep current appli-
cation codes unchanged.

In order to test our approach, we have directed our device driver to work with Basic
Local Alignment Search Tool (BLAST) I/O requirements. BLAST (Altschul et al., 1990) is one
of the most popular programs used to search and compare biological sequences. To the best of
our knowledge, all current BLAST implementations (e.g., NCBI-BLAST (NCBI, 2005), WU-
BLAST (WU-Blast, 2005)) execute flat formatted files stored in conventional operating system
file systems.

The new device provides a conventional file system interface from which BLAST can
open files as if they were regular files. The device captures the file system calls (e.g., open,
seek) allowing programmers to implement specific memory management policies (Lemos and
Lifschitz, 2003). The main advantage of this approach is the fact that it is not intrusive. Re-
searchers can still use their favorite BLAST program in its current version.

DEVICE DRIVER IMPLEMENTATION

Our implementation was developed for a Linux operating system, but the solution pro-
posed can be implemented in other Unix-like operating systems.

What is a device driver

A device driver, often called a driver for short, is a computer program that is intended to

Genetics and Molecular Research 4 (3): 563-570 (2005) www.funpecrp.com.br

An I/0 device driver for bioinformatics tools 565

allow another program (typically an operating system) to interact with a hardware device. Think
of a driver as a manual that gives the operating system instructions on how to use a particular
piece of hardware.

Modern operating systems (Tanenbaum, 2001) use device driver technology to sepa-
rate specific hardware characteristics from the operating system implementation. Printer De-
vice drivers is one popular example. In Microsoft Windows, programs do not send commands
directly to the printer. Instead, they send commands to an abstract layer managed by the oper-
ating system and the driver program (usually provided by the printer manufacturer) transforms
the abstract command to one or more commands acceptable by the actual hardware.

The file management and access architecture are the same. We can use device drivers
to hide hardware implementation details. In programs written for the UNIX family operating
system, writing data in a text file or printing one string in a video terminal is the same system call,
but internally the write implementation is completely different. The difference is implemented
by the device driver (Figure 1).

Program Program Program Program
A B C D

.

Operating System Abstract Layer
| | [[==

Video Printer File System
Device Device Device

PipeLine

=

B mam

Video Printer

Figure 1. Device driver and file access. There are four programs (A, B, C, and D) reading data (C), writing data (A, B, D)
or both (C). The arrows specify the data flow direction.

In this operating system device driver architecture (Figure 1), it does not matter what
real objects the programs are connected to. They access them with the same interface, the file
system interface, regardless of how they are really implemented. The device driver is respon-
sible for adapting the abstract file system interface to the real device.

Genetics and Molecular Research 4 (3): 563-570 (2005) www.funpecrp.com.br

R.C. Mauro and S. Lifschitz 566

Device classification

One device can be classified as physical (hardware connected) or soft (when two or
more programs talk with each other using the file system interface). We are proposing a soft
device, where we have the original BLAST on one side, and the BLAST data provider on the
other side, where the buffer manager is implemented.

Writing Linux devices

In Linux, the target operating system for our project, to write a device we have to write
a kernel module. A kernel module is a C program compiled and installed in the kernel. This
program must use kernel-specific API functions (ANSI standard functions are not allowed),
and it must follow specific kernel interfaces.

To write a device that has the same regular file behavior, we basically have to redefine
1/O operations in our device implementation. The I/O functions that need to be redefined are:
open, read, write, seek, and close.

To register a device, a function register_chrdev is called in a function init_module. A
structure containing a pointer to file operation functions (callbacks) is used as a parameter. The
callback functions implement the file system interface. We redefined open, read and write
operations, in order to implement the BLAST device driver (Figure 2).

Once compiled and installed, the operating system assigns a unique identifier to the
device. This identifier is used to link the device to a file system. We can create a file name to
access the device. If one program opens this fake file, instead of accessing a regular file, the
read and write operation will be redirected to the device read and write functions, which will
decide what to do.

HOW BLAST WORKS

BLAST (Altschul et al., 1990) is an algorithm for comparing biological sequences, such
as the amino-acid sequences of different proteins or the DNA sequences of different genes.
Given a library or database of sequences, a BLAST search enables a researcher to look for
sequences that either duplicate or resemble any sequence of interest.

BLAST is a sequence comparison algorithm optimized for speed used to search se-
quence databases for optimal local alignments to a query. The initial search is done for a word
of length W that scores at least T when compared to the query, using a substitution matrix. Word
hits are then extended in either direction in an attempt to generate an alignment with a score
exceeding the threshold of S (NCBI, 2005).

BLAST works at least in two phases. In the first phase, a full scan is performed. In the
second phase, the comparison is performed only against the sequences selected in the first
phase. This means that it does not matter in what sequence the process starts. We could shuffle
the sequences stored in the database and the final result should be the same: stored order is not
important.

By knowing how BLAST reads data from a sequence database, we can develop a
specific strategy to read data more efficiently than an operating system does. That is exactly
what is proposed in Lemos and Lifschitz, 2003.

Genetics and Molecular Research 4 (3): 563-570 (2005) www.funpecrp.com.br

An I/0 device driver for bioinformatics tools

567

open: devblast copen,
read: devblast read,
write: devblast write,

int init module()

{ .

int devblast_cpent
struct incde *incde,
struct file *filp)

4

==

m

le Open implementaticon

ssize t devblast read(
struct file *filp,
char *buf,

'

struct file cperations devblast fops

= {

register_chrdevtD, "devblast", &devblast_fcps};

size t count,
lnff_t *f_pDE}

// Read Implementaticn,

}

ssize t devblast write(
struct file *filp,
const char *buf, -

.
N
File System
Interface
Implementation
Client buffer
(read from),

buffer size and
read absolute
file position.

£/ returns effective size read

size t count,
loff t *f pos)

J) Write Imp

Client buffer
(write to), buffer
max size and
write absolute
file position.

le
/) returns =ffective size written

Figure 2. Device driver basic structure.

Genetics and Molecular Research 4 (3): 563-570 (2005) www.funpecrp.com.br

R.C. Mauro and S. Lifschitz 568

A BLAST amino-acid database is composed basically of three files: the sequence file
(-psq), the header file (.phr) and index (.pin). This last file assigns each sequence with its
corresponding header information.

In our implementation, BLAST still reads from these files, but not directly. The file
access is through our specialized device driver: the BLAST device driver. The real files are
accessed by the provider module.

ARCHITECTURE AND IMPLEMENTATION
Architecture overview
In our solution (Figure 3) we want to use the original version of NCBI BLAST, without

have to recompile the code. Although the current implementation only works with the BLAST
database format, the main idea can be implemented for other BLAST flavors.

Original NCBI BLAST Implementation
A

BLAST BLAST BLAST BLAST
Provider (A) 1 2 amm N

Operating System Abstract Layer
L L [

BLAST Device Drive (B)

File System
Device

Original BLAST
Sequence File

Figure 3. BLAST device driver architecture.

The original BLAST programs run as if they were reading from a conventional file. But
they are reading in fact from the BLAST device driver. When one BLAST instance needs to

Genetics and Molecular Research 4 (3): 563-570 (2005) www.funpecrp.com.br

An I/0 device driver for bioinformatics tools 569

read unavailable data, the device puts the process to sleep until the data arrive from the BLAST
provider. The device sends a message to the provider, indicating that the process is sleeping
because it needs a chunk of data. The provider knows what BLAST instance is sleeping and
what file segment is needed for each one.

The provider decides which instances will wake up, by sending to the device a list
containing a process identifier and the respective chunk of data to be sent to the BLAST pro-
cess.

Implementation

This section summarizes the implementation strategies used to implement the BLAST
device driver and the provider.

BLAST device driver

The BLAST device driver is a Linux kernel module that implements the operation
system file system interface. The BLAST device driver is accessed by BLAST and by the
provider through a special system name.

The first process that opens the device for write mode is elected as the provider. All
others are considered BLAST clients. When the provider requests data from a device, it sends
to the provider the current system state, which includes a list of sleeping processes and also
what file offset each process needs. When a client opens the file linked to the device, the client
process ID is inserted into the process state list, to be sent to the provider when required. The
device has an internal buffer, where the data sent by provider are stored. When a client requests
data, the device checks if data in the local buffer can satisfy the client. If so, the client is served
immediately. If not, client goes to a wait queue.

Provider

When a provider module starts, it opens the original BLAST sequence file in a read-
only mode and opens the pseudofile assigned to the device driver for read and write. The
provider uses the read channel to capture information from the device, and it uses the write
channel to send data to the device. The information captured from the device is implemented as
alist of active BLAST processes that are sleeping, waiting for I/O. The provider module chooses
which process it will serve and then sends data to the device.

Current device implementation chooses the process that has the smallest file offset
request to serve. Our intention is to define an abstract decision mechanism, allowing program-
mers to define their own policy strategy.

CONCLUSIONS AND FUTURE WORK

We have developed and tested a specialized device driver for BLAST. The main ad-
vantage of our solution is implementation independence: it can be used with the original BLAST
program. Based on preliminary tests, our architecture does not introduce overhead into BLAST
processing, even if no buffer management policy is used. The next step of our research is to

Genetics and Molecular Research 4 (3): 563-570 (2005) www.funpecrp.com.br

R.C. Mauro and S. Lifschitz 570

implement the buffer management policy proposed by Lemos and Lifschitz, 2003, comparing
simulation results with real execution. We plan to evaluate this architecture using other BLAST
implementations. We also plan to write an extensive tutorial of how to create buffer manage-
ment, using our solution, in order to stimulate the database community to write specialized buffer
management algorithms specialized for the BLAST program.

Our database research group has been publishing and developing solutions for
bioinformatics, always based upon a database approach. These solutions include a framework
for the genome database (Seibel and Lifschitz, 2001), the use of agents and data allocation
techniques (Costa and Lifschitz, 2003) and buffer management strategies (Lemos and Lifschitz,
2003). This latter reference suggests a circular buffer algorithm. Simulations implementing this
approach showed that the BLAST throughput could be increased by 50%.

The architecture that we propose was implemented to facilitate the buffer implementa-
tion proposed by Lemos and Lifschitz, 2003. Nevertheless, this solution can be used in other
contexts than bioinformatics, contemplating tools that manipulate huge amounts of data without
database support.

REFERENCES

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990). A basic local alignment search
tool. J. Mol. Biol. 215: 403-410.

Costa, R.L.C. and Lifschitz, S. (2003). Database allocation strategies for parallel BLAST evaluation on
clusters. Distrib. Parallel Databases 13: 99-127.

Lemos, M. and Lifschitz, S. (2003). A Study of a Multi-ring Buffer Management for BLAST. Proceedings
of the Ist International Workshop on Biological Data Management (BIDM), pp. 5-9.

NCBI (2005). NCBI - National Center for Biotechnology Information. [http://www.ncbi.nlm.nih.gov]. Last
accessed June 2005.

Seibel, L.F.B. and Lifschitz, S. (2001). A Genome Databases Framework. Proceedings of the Database
and Expert Systems (DEXA) Conference, Lecture Notes in Computer Science (LNCS), Vol. 2113, pp.
319-329.

Tanenbaum, A.S. (2001). Modern Operating Systems. Prentice Hall Inc., Upper Saddle River, NJ, USA.

WU-BLAST (2005). Washington University BLAST Implementation. [http://blast.wustl.edu/]. Last ac-
cessed June 2005.

Genetics and Molecular Research 4 (3): 563-570 (2005) www.funpecrp.com.br

