

Climatic and anthropic influence on size and fluctuating asymmetry of Euglossine bees (Hymenoptera, Apidae) in a semideciduous seasonal forest reserve

M.C. Silva¹, C. Lomônaco², S.C. Augusto² and W.E. Kerr¹

¹Programa de Pós-Gradução em Genética e Bioquímica, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil ²Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil

Corresponding author: C. Lomônaco E-mail: lomonaco@ufu.br.

Genet. Mol. Res. 8 (2): 730-737 (2009) Received December 12, 2008 Accepted January 26, 2009 Published June 23, 2009

ABSTRACT. We examined the influence of climate and man on size and fluctuating asymmetry in two species of Euglossine bees collected from a semideciduous forest reserve. Sixty males of each species were collected; four measurements were made of their wings to obtain a multivariable size index and a fluctuating asymmetry index. No significant differences in the size of *Eulaema nigrita* Lepeletier were found between the areas and seasons. Larger males of *Euglossa pleosticta* Dressler were collected during the hot and wet season; however, male size did not vary with location. Higher rainfall and a consequent increase in food availability could have influenced the increase in size of *E. pleosticta*. Bees collected during the hot and wet season at the forest border were more asymmetric than bees collected during the cold and dry season; the latter were found inside the forest. This indicates that climate and anthropic interferences influence the stability of development of *E. pleosticta*. Consequently, this species

could be used as a bioindicator of stress. Apparently, *E. nigrita* is more resistant to environmental interference.

Key words: Phenotypic plasticity; Development stability; Stress bioindicators; *Eulaema nigrita*; *Euglossa pleosticta*