

Genotypic stability and adaptability in tropical maize based on AMMI and GGE biplot analysis

M. Balestre¹, R.G. Von Pinho², J.C. Souza¹ and R.L. Oliveira¹

¹Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG, Brasil ²Departamento de Agricultura, Universidade Federal de Lavras, Lavras MG, Brasil

Corresponding author: M. Balestre E-mail: marciobalestre@hotmail.com

Genet. Mol. Res. 8 (4): 1311-1322 (2009) Received July 13, 2009 Accepted August 7, 2009 Published November 3, 2009

ABSTRACT. We evaluated the phenotypic and genotypic stability and adaptability of hybrids using the additive main effect and multiplicative interaction (AMMI) and genotype x genotype-environment interaction (GGE) biplot models. Starting with 10 singlecross hybrids, a complete diallel was done, resulting in 45 doublecross hybrids that were appraised in 15 locations in Southeast, Center-West and Northeast Brazil. In most cases, when the effects were considered as random (only G effects or G and GE simultaneously) in AMMI and GGE analysis, the distances between predicted values and observed values were smaller than for AMMI and GGE biplot phenotypic means; the best linear unbiased predictors of G and GE generally showed more accurate predictions in AMMI and GGE analysis. We found the GGE biplot method to be superior to the AMMI 1 graph, due to more retention of GE and G + GE in the graph analysis. However, based on cross-validation results, the GGE biplot was less accurate than the AMMI 1 graph, inferring that the quantity of GE or G + GE retained in the graph analysis alone is not a good parameter for choice of stabilities and adaptabilities when comparing AMMI and GGE analyses.

Key words: AMMI; GGE biplot; BLUP; Cross-validation