

Short communication

Single nucleotide polymorphisms from *Theobroma cacao* expressed sequence tags associated with witches' broom disease in cacao

L.S. Lima¹, K.P. Gramacho¹, N. Carels², R. Novais¹, F.A. Gaiotto², U.V. Lopes¹, A.S. Gesteira², H.A. Zaidan^{1,2}, J.C.M. Cascardo², J.L. Pires¹ and F. Micheli^{2,3}

¹Centro de Pesquisas do Cacau, Itabuna, BA, Brasil
²Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brasil
³Cirad-BIOS, UMR DAP, Montpellier, France

Corresponding author: F. Micheli E-mail: fabienne.micheli@cirad.fr

Genet. Mol. Res. 8 (3): 799-808 (2009) Received February 20, 2009 Accepted May 17, 2009 Published July 14, 2009

ABSTRACT. In order to increase the efficiency of cacao tree resistance to witches' broom disease, which is caused by *Moniliophthora perniciosa* (Tricholomataceae), we looked for molecular markers that could help in the selection of resistant cacao genotypes. Among the different markers useful for developing marker-assisted selection, single nucleotide polymorphisms (SNPs) constitute the most common type of sequence difference between alleles and can be easily detected by *in silico* analysis from expressed sequence tag libraries. We report the first detection and analysis of SNPs from cacao-*M. perniciosa* interaction expressed sequence tags, using bioinformatics. Selection based on analysis of these SNPs should be useful for developing cacao varieties resistant to this devastating disease.

Key words: Single nucleotide polymorphisms; Expressed sequence tags; Bioinformatics; Witches' broom disease

©FUNPEC-RP www.funpecrp.com.br

Genetics and Molecular Research 8 (3): 799-808 (2009)