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ABSTRACT. The study of complex traits using large databases of 
molecular markers has reshaped genetic breeding programs as it 
allows the direct incorporation of information from a large number of 
molecular markers for the prediction of genomic values. However, 
the large number of markers can lead to problems of computational 
demand, multicollinearity, and dimensionality. We evaluated the use 
of Multilayer Perceptron Neural networks to resolve this problem and 
propose a new dimensionality reduction method called Probe Subset 
Selection  Methodology, for the prediction of genetic values, in 
Genome Wide Selection studies. We used a simulated F1 population 
for 12 quantitative traits, including different modeling structures, 
average degrees of dominance and heritability. The Multilayer 
Perceptron Neural Networks, together with the proposed Probe 
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Subset Selection Methodology, provided more accurate predictions 
than the RR-BLUP methodology and reduced the root mean square 
error from 577.249 to values below 24. The use of computational 
intelligence in breeding programs is a promising tool for prediction 
purposes, since epistasis and dominance were not limiting factors for 
the proposed Multilayer Perceptron Neural Network method. 
 
Key words: Artificial Intelligence; Subset selection; Dominance; Epistasis; 
Prediction 

INTRODUCTION 
 
The need for greater genetic gain drove researchers to formulate various breeding 

strategies in order to obtain more accurate phenotypic observations. Meuwissen (2001) 
proposed the use of Genome Wide Selection (GWS), a methodology that allows the 
incorporation of molecular information directly in the prediction of the genetic merit of 
individuals. 

However, methodologies based on GWS present some challenges regarding their 
applicability. The first is related to the large number of molecular markers that are not 
associated with QTLs (controlling loci of quantitative characteristics), which makes the 
number of molecular markers almost always much higher than the number of individuals 
evaluated and causes dimensionality and multicollinearity issues (Cruz, 2013).  In this 
context, Gianola et al. (2011) and Azevedo et al. (2015) have recommended the use of 
statistical methods that integrate both the selection of covariates and the regularization of 
the estimation process. 

Another challenge imposed by this methodology is related to the genetic model 
associated with the quantitative character, which differ from each other, depending on the 
statistical model employed (Odilon Junior, 2013). Most genetic models include only the 
additive portion of the genetic value, while neglecting dominance and epistatic interactions, 
which are important effects for the improvement of prediction accuracy (Sant’anna et al., 
2021).  

Aiming to overcome these challenges, various researchers have proposed the use of 
techniques based on computational intelligence, such as Artificial Neural Networks (ANN), 
since their results depend on learning rather than on the distribution of the variables 
themselves, so that they can capture nonlinear relationships between markers from the data 
itself (Long et al., 2011; Cruz and Nascimento 2018).  

Multilayer Perceptron Neural Network (MLPNN) are a particular class of ANNs 
that have properties that make them attractive to genetic breeding programs for the purpose 
of predicting genetic values and have been used for many authors (Sant’Anna et al., 2015; 
Silva et al., 2016; Barbosa et al. 2021). In general, these studies conclude that the 
application of MLPNN in genomic selection is powerful for capturing complex interactions 
in comparison with semiparametic and linear regressions.  

However, the problem of working with genomic selection is related to the high 
number of markers, which increases the chance of a high correlation between markers and 
also leads to less precision and a great computational demand for MLPNN training (Cruz 
and Nascimento, 2018). 
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Sant’anna et al., (2021) reported that a subset of markers can be used for training 
and demonstrated that by reducing the search space, ANN can improve the learning process 
and increase the predictive power of the model. 

In the light of the foregoing, we propose a new dimensionality reduction 
methodology, based on the selection of variables, called Probe Subset Selection and 
evaluated the efficiency of the Multilayer Perceptron Neural Network (MLPNN) method for 
prediction in a simulated population, considering different scenarios with difficult 
situations, for breeding based on sexual reproduction, with the inclusion of dominance, 
epistasis and environmental effects. The results were compared with those achieved by the 
RR-BLUP method. 

MATERIAL AND METHODS 

Data simulation 
 
The comparative study on prediction methods, based on simulated data, consisted of 

the evaluation of an F1 population, coming from divergent parental line genomes, with 500 
individuals and genotyped in relation to 1000 codominant markers. Although low, the 
number of markers used does not compromise the comparative objectives of the present 
study. The phenotypic values of the individuals were generated according to equation (1): 

 

퐹 = 퐺 + 퐸                                                   (Eq. 1) 
 

where: 퐺  is the genetic effect given by the sum of genetic effects in each locus, and 퐸  is an 
environmental effect. 

The phenotypic value expressed by a given individual, for quantitative 
characteristics controlled by 100 gene loci, was obtained by adopting two models: the 
additive-dominant model (Equation 2) and epistatic model (Equation 3). 

 

푌 = 휇 +∑ 푝 훼 + 퐸                                      (Eq. 2) 
 

푌 = 휇 +∑ 푝 훼 +∑ 푝 훼 훼 + 퐸                        (Eq. 3) 
 

where: 훼 = 푎 + 푑 and	푑 푎⁄  = degrees of dominance, with 휇 + 푎 , 휇 + 푑  and 휇 − 푎 , 
coded with 1, 0 or -1, for the genotypic classes AA, Aa and aa, respectively; 푝  is the 
contribution of locus j to the manifestation of the trait under consideration, generated by 
binomial distribution, with parameters n = 99 and p =q= 0.5.  

For the epistatic model (Equation 3), the first summation refers to the contribution 
of the individual locus through its additive and dominant effects; the second summation 
represents the multiplicative effects due the epistatic interactions between pairs of loci: 푎  is 
the multiplicative effect of the favorable allele in locus j, and j+1 is the contribution of locus 
j to the manifestation of the trait under consideration. 

Quantitative traits were simulated by considering three degrees of dominance (d/a = 
0, 0.5, and 1) and two broad sense heritability levels (h2 = 35 and 70), which represented 
three gene activities: additive, dominance and epistatic, thereby totalling twelve scenarios 
(Table 1). 
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Table 1. Simulated scenarios composed of a combination of traits, heritability, and dominance degree. 
 

Traits Heritability (%) Model d 
T1 - D0H35Ad 35 additive 0 
T2 - D0H35Ep 35 epistatic 0 
T3 - D0H70Ad 70 additive 0 
T4 - D0H70Ep 70 epistatic 0 
T5 - D60H35Ad 35 additive-dominant 0.6 
T6 - D60H35Ep 35 epistatic 0.6 
T7 - D60H70Ad 70 additive-dominant 0.6 
T8 - D60H70Ep 70 epistatic 0.6 
T9 - D120H35Ad 35 additive-dominant 1.2 
T10 - D120H35Ep 35 epistatic 1.2 
T11 - D120H70Ad 70 additive-dominant 1.2 
T12 - D120H70Ep 70 epistatic 1.2 

Establishment of the number of molecular markers to be selected 
 
In order to solve possible dimensionality problems and or the occurrence of 

multicollinearity due to the greater number of marks in relation to the number of genotyped 
individuals, a methodology for reducing dimensionality based on subset (selection of 
variables) was proposed, named Probe Subset Selection Methodology. This method was 
developed in two stages. The first was used to establish the appropriate size of the 
subsample of markers, and the second, to identify the most important markers to compose 
the final subset to be used for further prediction analysis. 

Aiming to determine the optimal number of markers, as suggested by Sant’Anna et 
al. (2021), the Stepwise regression was used for the most complex characteristic (T10), with 
epistatic effects, dominance and low heritability. The maximum number of markers was 
determined based on the combination of three criteria: the determination coefficient (R2) – 
best possible values –, the root mean square error (RMSE) – lowest possible values and the 
condition number (CN) of the correlation matrix. CN is an important measure used to 
identify the existence of multicollinearity in matrices of variables, through the analysis of 
the eigenvalues of the XTX matrix, where X refers to the independent variables of the model 
(Montgomery and Peck, 1981). CN is expressed by Equation (4): 

 

퐶 = 	 , ,…,
	 , ,…,

                                                  (Eq. 4) 
  

where: 휆  is the eigenvalue for the i-th variable, i=1, ..., p.  
The CN evaluation was carried out as suggested by Montgomery and Peck (1981): 

if 퐶푁 < 100, then there were no multicollinearity problems; if 100 < 퐶푁 < 1000, then the 
multicollinearity was moderate to severe; and if 푁퐶 > 1000, then severe multicollinearity 
was considered.  

Probe Subset Selection Methodology 
 
The Probe Subset Selection Methodology proposed in this work consists of 

identifying the most important variables through a procedure inspired by the genetic 
algorithm (Holland, 1975). The genetic algorithm is based on the coding of a set of all 
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possible solutions for a given problem, so that, through an exhaustive search and inspired by 
evolutionary biology (heredity, mutation, natural selection, etc.), the best solution will be 
determined (Goldberg, 1989; Raymer et al., 2000). 

The use of the genetic algorithm in its original form for studies of genomic selection 
is impracticable, as it would mean testing all possible combinations (퐶 ) between the 
molecular markers, where x refers to the optimal number of markers previously established. 
Even the selection of a few markers (small x) would lead to an exorbitant number of 
possible combinations and would require a huge amount of time and computational 
resources. The proposed Probe Subset Selection must be applied in two stages: in the first, a 
finite set of solutions is established, and in the second stage, the recombination of the best 
solutions is performed to obtain a single solution. 

In the first step, a number n of subsamples or "probes" - representing a sample of 
explanatory variables or molecular markers - is randomly removed from the original set of 
variables. In this study, 20,000 subsamples (probes) involving n markers that had been used 
in the regressions were arbitrarily considered. At the end of the first stage, an index is 
calculated to represent the relative importance (퐼푅 ) of each molecular marker according to 
Equation (5) below: 

 

퐼푅 = ∑ 훽 푅 , para i = 1,2, ..., m                            (Eq. 5) 
 

where: 푛 : number of times that a given Mi marker participated in the 20,000 polls carried 
out; 훽 : regression coefficient associated with the Mi marker included in the regression 
model in a given probe 푆 ; 푅 : coefficient of determination obtained by the regression 
adjusted in the j-th probe; m: total number of markers studied (in the study, equal to 1000). 

The second step consists of the recombination of the results and the selection of 
those with the best performance to be used in a new regression. This procedure is carried 
out based on the ranking provided by the indexes 퐼푅 , which allows the selection of the n 
best variables for the calculation of the new multiple regression and the new coefficient of 
determination. 

Genome Wide Selection – RRBLUP 
 
The RR-BLUP additive model was adopted, as described by Meuwissen et al. 

(2001) (Equation 6): 
 

푦 = 푊푏 + 푋푚 + 푒                                             (Eq. 6) 
 

where: y is the vector of phenotypic observations; b is the vector of fixed effects; m is the 
vector of random marker effects, and e refers to the vector of random errors, 푒~푁(0, 퐼휎 ); 
W and X are matrices of incidence for b and m, respectively. Individual genomic estimated 
breeding values (GEBVs) were estimated by the following Equation (7). 

 

퐺퐸퐵푉 = 푦̂ = 휇̂ +∑ 푥 푚̂ 																																														(Eq. 7) 
 

where: Xij is the line of the incidence matrix that allocates the genotype of the j-th marker 
for each individual (i), 1, 0, -1 for genotypes AA, Aa, aa, respectively, for biallelic and 
codominant markers, and 푚̂  is the effect of the i-th marker estimated by RR-BLUP.  

http://www.funpecrp.com.br


©FUNPEC-RP www.funpecrp.com.br Genetics and Molecular Research 21 (1): gmr18982 

 
 
 
 
 
 
 
 

G.N. Silva  et al.                                                                          6 

 

Multilayer Perceptron Neural Network (MLPNN) 
 
The MLPNN architecture used was backpropagation, with three hidden layers and 

considering one to four neurons in each layer. The selected molecular marker matrix [M1 
M2 ... Mn] was considered as input information, so that the desired output was the true 
genotypic value - a known value, since the populations were generated via simulation. In 
the output layer, MLPNN returned the predicted value for each individual (YNetwork) (Figure 
1). 

 

 
Figure 1. Multilayer Perceptron Neural Network (MLPNN) layout. Inputs X1, ..., X150 in the input layer refer to 
the 150 markers considered in the analyses. Three hidden intermediate layers (ni1, ni2 and ni3) consisting of i 
neurons (i = 1, ..., 4). The MLPNN returns the vector of predicted values (YNetwork). 

 
The logistical sigmoid (logsig) and hyperbolic tangent (tansig) were the activation 

functions used. The MLPNN network training process was carried out using the error 
backpropagation algorithm (Silva et al., 2010). A fivefold cross-validation scheme was 
adopted. The population of 500 individuals was randomly split into five mutually exclusive 
subsets, and each round four of these subsets constituted the training population (totaling 
80% of individuals), while the remaining subset constituted the validation population (20% 
of the total population). 

Efficiency evaluation 
  
The methodologies RR-BLUP and MLPNN were compared using the predictive 

accuracy, expressed through the root mean square error (RMSE). Predictive accuracy is the 
model ability to correctly predict the expected true value. The RMSE is estimated by the 
following Equation (8): 
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RMSE = ∑( ^ )      (Eq. 8) 
 

where Y is the observed phenotypic value, and 푌̂ is the estimated phenotypic value. 

Computational Resources 
 
The population simulation was implemented with the use of the GENES software 

system (Cruz, 2016). The statistical analyses were performed using the R software system, 
with the RR-BLUP package (R core team, 2018). Both the MLPNN methodology and Probe 
Subset Selection Methodology were implemented using the Genes software system in 
combination with MATLAB (Matlab, 2010). 

RESULTS AND DISCUSSION 
 
The dimensionality was reduced as proposed by Sant’Anna et al. (2021), that is, 

through a graphical procedure that evaluates the values of the determination coefficient 
(R2), root mean square error (RMSE) and condition number (CN) for the most complex 
characteristic. The results indicated that the optimal number of markers to be used was 
approximately 150, given the higher value of R2, low root mean square error and CN < 100 
(Figure 2). In this study, a dimensionality reduction methodology called Probe Subset 
Selection was proposed, whose main interest was to select the 150 markers with the greatest 
correlation with the characteristics of interest. 

 

 
Figure 2. Graphical representation of the parameters: determination coefficient (R2) in red, root mean square 
error (RMSE) in green, and the condition number (CN) in blue, obtained by the Probe method, by including 1 to 
300 molecular markers (from the total of 1,000) in the stepwise regression model. 

 
Figure 3 shows the predictive accuracy (RMSE = root mean square error) obtained 

for the 12 scenarios evaluated, considering or not the reduction performed by the RRBLUP 
model. Reduced dimensionality improved the prediction accuracy (RMSE = root mean 
square error) for all scenarios. 
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Figure 3. RMSE obtained from RR-BLUP without (1000) and with (150) reduction of the marker matrix by 
Probe Subset Selection Methodology, in a set of validation data involving cross-validation procedures. 

 
Specifically for the trait D120H35Ep (T10), which is a variable considered to be 

highly complex due to its effects of dominance, epistasis, and low heritability, it is observed 
that RMSE was reduced from 960 to 570, approximately, after the application of marker 
selection by the Probe Subset Selection Methodology. For the trait D120H70Ep (T12), 
characterized by high dominance and epistasis, RMSE decreased from 790 to 470, 
approximately (Figure 3). Even for low complexity traits, such as D0H70Ad (T3), RMSE 
was reduced from 100 to 60, approximately (Figure 3). Therefore, the Probe Subset 
Selection Method proposed as a dimensionality reduction technique was efficient and has a 
promising potential for applicability aiming to improve the prediction accuracy of genomic 
selection methodologies and reduce the computational demand of computational 
intelligence techniques. 

This method was built inspired by the genetic algorithm and has already been 
shown to be efficient in other applications that involve dimensionality reduction. Raymer et 
al. (2000) adopted the genetic algorithm in combination with the nearest neighbor 
classification rule and compared the results with classical feature selection and extraction 
techniques, and with the results obtained they were able to identify favorable water binding 
sites on protein surfaces. 

Problems related to dimensionality in genomic selection studies have been reported 
by other authors (Azevedo et al., 2014; Sant'anna et al., 2021). Azevedo et al. (2014) 
proposed the use of dimensionality reduction methods to overcome the genomic selection to 
predict genomic breeding values for carcass traits in pigs. James et al. (2013) discussed the 
problems arising from the high dimensionalities considered in wide genomic selection - 
such as variance bias, overfitting and multicollinearity - and highlighted the possibility of 
using reduction and selection procedures for subsamples or penalized methods, such as 
Stepwise Regression, Partial Principal Components, Partial Minimum Squares and Lasso 
Bayesiano as alternatives. Sant'anna et al. (2021) showed that the use of stepwise regression 
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before the use of these techniques led to an improvement in the accuracy of prediction of 
the genetic value, facilitating processing and analysis time due to a reduction in 
dimensionality. 

The comparison between the RRBLUP and MLPNN prediction methods was 
performed only after using the proposed dimensionality reduction method. It is important to 
note that both methods used the same 150 markers. Several authors have already pointed 
out that methodologies based on computational intelligence require a lot of time and super 
computers. They have also found that methods for reducing dimensionality help to increase 
the efficiency of these methods (Hinton and Salakhutdinov, 2006; Azevedo et al., 2014; 
Sant'Anna et al., 2021). Sant'Anna et al., 2021 used dimensionality reduction methodologies 
and proved that such methods improve the efficiency of RRBLUP models and RBFNN 
networks and reduce the time of the analysis in a normal computer from 20h to less than 
one hour, after dimensionality reduction. 

Table 2 presents a comparison between the RR-BLUP and MLPNN methodologies, 
after the dimensionality reduction performed by the Probe Subset Selection Methodology. 
As observed in Table 2, the prediction of genomic genetic values based on MLPNN 
outperformed RR-BLUP for all scenarios evaluated. Specifically, for T10 - D120H35Ep, for 
example, RMSE decreased from 577.249 to 24.483. 

 
 

Table 2. RMSE obtained from RR-BLUP and MLPNN through selected markers (150) by Probe Subset 
Selection in a set of validation data involving cross-validation procedures. 
 

 RMSE 
Traits 150 RR-BLUP 150 MLPNN 
T1 - D0H35Ad 049.092 ± 2.294 04.696 ± 0.044 
T2 - D0H35Ep 107.264 ± 3.601 10.718 ± 0.186 
T3 - D0H70Ad 060.946 ±  5.060 03.327 ±  0.145 
T4 - D0H70Ep 078.218 ± 13.380 09.044 ±  0.800 
T5 - D60H35Ad 075.732 ± 4.872 05.039 ±  0.068 
T6 - D60H35Ep 220.485 ± 24.846 15.105 ±  0.594 
T7 - D60H70Ad 086.116 ± 3.249 03.729 ±  0.063 
T8 - D60H70Ep 149.463 ± 12.954 12.425 ±  0.281 
T9 - D120H35Ad 083.985 ± 11.687 06.195 ±  0.473 
T10 - D120H35Ep 577.249 ± 48.375 24.483 ±  0.740 
T11 - D120H70Ad 115.167 ± 5.722 04.512 ± 0,134 
T12 - D120H70Ep 468.195 ± 59.989 19.697 ±  0.354 

 
Other authors had already reported the superiority of neural networks in prediction 

studies (Sant’anna et al., 2015; Silva et al., 2016; Silva et al., 2017; Sant’anna et al., 2019; 
Sant’anna et al., 2021). Sant’anna et al. (2019) evaluated the genome-enable prediction by 
Radial Basis Neural Networks (RBFNN) model compared to RRBLUP and obtained greater 
prediction accuracy for the RBFNN model. For traits with h2 = 35%, RMSE decreased from 
49.092 to 4.696, by adopting MLPNN over RR-BLUP, in the scenario with additive effects 
(T1). For traits with h2 = 70%, RMSE decreased from 60.946 to 3.327, by adopting MLPNN 
over RR-BLUP, in the scenario with additive effects (T3) (Table 2). 

In general, the MLPNN method is less affected by the different genetic 
architectures evaluated (Figure 4). Figure 4a shows that, with the inclusion of dominance 
effects, RMSE increased, on average, from 74 to 311, approximately, using RR-BLUP, and 
from 7 to 14, approximately, using MLPNN, in agreement with the results obtained by other 
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authors (Sant’anna et al., 2019; Sant’anna et al., 2021). Sant’Anna et al. (2019) carried out 
studies using simulated populations with different levels of dominance and heritability and 
verified the predictive superiority of the RBF neural networks when compared with the G-
BLUP method, given the lower RMSE values obtained. 

 
 

 
Figure 4. RMSE obtained from MLPNN and RR-BLUP through selected markers (100) by Probe Subset 
Selection in a set of validation data involving cross-validation procedures, considering: (a) dominance levels - no 
dominance (d/a = 0), moderate dominance (d/a = 0.6) and high dominance (d/a = 1.2); (b) Heritability – h2 = 35% 
and h2 = 70%; (c) Genetic model – additive-dominant and epistatic model. 

 
Greater impact on RMSE is observed with the inclusion of dominance effects in the 

control of low-heritability traits. For the traits T1-D0H35Ad, T5-D60H35Ad and T9-
D120H35Ad, the prediction accuracy ranged from 4.696 to 5.039 and then, to 6.165 with 
MLPNN. It ranged from 49.092 to 75.732 and then, to 83.985 with RR-BLUP, by including 
dominance in the scenario with additive effects (Table 2).  

The study of heritability is very important for the success of breeding programs, as 
it assists in determining the genetic variation of individuals and its effect on segregating 
generations, which allows identifying, from the phenotypic values, the individuals with 
desirable genotypic values and the highest concentration of favorable alleles (Cruz, 2012). 
However, difficulties in predicting low heritability characters have been reported by several 
authors (Goddard, 2009; Hayes et al., 2009; Cruz, 2012; Almeida Filho et al., 2016; Glória 
et al., 2016). Almeida Filho et al. (2016) carried out preliminary studies to detect the 
contribution of dominance in phenotypic prediction in pine breeding in simulated 
populations. They also obtained lower accuracy for low heritability traits when dominance 
effects were included and concluded that dominance reduces the overall precision of 
prediction models.  

It is worth mentioning that, although affected by low heritabilities, MLPNN 
networks were more accurate than RR-BLUP. In the scenarios with higher heritability, the 
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RMSE average changed from 11 to 9 with the use of MLPNN, and from 185 to 160, 
approximately, when using RR-BLUP (Figure 4b). Artificial neural networks - through their 
networks of artificial neurons, activation functions and learning algorithms - are believed to 
be able to capture the effects of disturbing factors neglected by other methodologies and 
thus provide more efficient results (Gianola et al., 2011; Gonzalez-Camacho et al., 2012; 
Nascimento et al., 2013; Bhering et al., 2015; Silva et al., 2016). 

Sant’Anna et al. (2021) studied simulated populations with heritabilities of 30% and 
60% and obtained inferior predictive accuracy for lower heritability traits by including 
dominance effects and demonstrated that Radial Basis Function neural networks 
outperformed RR-BLUP. Glória et al. (2016) studied the effects of markers and heritability 
estimates based on genome prediction through Bayesian regularized neural networks and 
concluded that neural networks are promising quantitative tools for genomic prediction 
studies. 

As dominance effects, the epistatic interactions also hinder the practice of breeding 
and selection, since superior phenotypes can be attributed to populations with a high 
number of genetically distinct individuals (Vencovsky, 1973). The inclusion of epistatic 
effects has penalized the predictive accuracy of both methodologies by increasing the 
average of RMSE values from 5 to 15, approximately, using MLPNN, and from 80 to 265, 
approximately, using RR-BLUP (Figure 4c). Specifically, for T1-D0H35Ad, the RMSE 
value was 4.696 and, with the inclusion of epistatic effects (T2-D0H35Ep), the RMSE value 
increased to 10.718 with MLPNN and from 49.092 to 107.264 when using RR-BLUP, 
respectively (Table 2).  

For the most complex traits, the predictive accuracy declined even more. For T9-
D1.2H35Ad, the RMSE value was 6.195 and, when including epistatic effects (T10-
D1.2H35Ep), the RMSE value increased to 24.483 with MLPNN, and from 83.985 to 
577.249 when using RR-BLUP, respectively (Table 2). Almeida Filho et al. (2016) 
highlighted the difficulties of modeling epistasis effects and that such effects could be 
disturbing and affect the accuracy of the models. 

Such results demonstrate that the MLPNN neural network was able to capture the 
effects of epistasis on the characteristics of interest in this study, through its neuron 
networks, unlike RR-BLUP, which neglects such effects, since its model only involves the 
term, which in its equation refers to the area of incidence of the dose effects of the studied 
markers rather than the interaction between them (Resende et al., 2014). In computational 
intelligence techniques, the inputs are also represented by the information of Xm markers. 
However, the hidden layers used become indispensable to capture effects, in addition to 
those related to the additive action of the information (Haykin, 1999; Moore, 2006). 

Gonzalez-Camacho et al. (2012) carried out studies with simulated data and found 
that the computational intelligence method of RBF Neural Networks can capture epistatic 
effects. Beam et al. (2014) used Bayesian Neural Networks to detect epistasis in genetic 
association studies for several simulated scenarios and concluded that neural networks are a 
powerful technique for association studies, with the ability to capture epistatic effects. 
Barbosa et al. (2021) demonstrated that Multilayer Perceptron are efficient for predicting 
genetic values in the presence of additive-dominant and epistatic gene control in simulated 
populations presenting different levels of heritability. 
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CONCLUSIONS 
 
The use of the proposed Probe subset selection methodology for selecting molecular 

markers in this study proved to be an effective strategy to improve the prediction accuracy 
of RR-BLUP. By adopting the selected markers, MLPNN presented predictive accuracy, 
expressed by mean square error, higher than that presented by RR-BLUP and successfully 
allowed incorporation of additive, additive-dominant, and epistatic effects into prediction 
models. 
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