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ABSTRACT. We compared two statistical methodologies applied to 
genetic and genomic analyses of categorical traits. The first one 
consists of a Bayesian approach to the Bayesian Linear Mixed Model 
(BLMM), which addresses the statistical problems of genomic 
prediction. The second methodology, called Bayesian Generalized 
Linear Mixed Model (BGLMM) is similar, but it is used when the 
distribution of the response variable is not Gaussian, as in the case of 
disease resistance phenotype categories. These models were 
compared according to predictive ability, bias, computational time 
and cross validation error rate (CVER). Additionally, an alternative 
classification method for the BLMM was proposed, which allowed us 
to obtain the CVER for this model. Estimates of the genetic 
parameters were obtained using BLASSO (Bayesian Least Absolute 
Shrinkage and Selection Operator) and Bayesian G-BLUP (Genomic 
Best Linear Unbiased Prediction) estimation methods applied to 
BLMM and BGLMM. The models were applied in two scenarios, 
with two and four classes for the phenotype of resistance to rust 
disease caused by the pathogen Puccinia psidii and classified as 
reaction types (two classes) and infection levels (four classes) 
recorded for 559 trees of Eucalyptus urophylla with 24,806 SNP 
markers. Modeling this trait through SNPs allow the next generation 
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of plants to be selected early, reducing time and costs. We found the 
same predictive ability for both models and a bias value closer to the 
ideal for BLMM (GBLUP). The BGLMM had the best CVER (0.29 
against 0.32 and 0.47 against 0.51 for 2 and 4 categories, 
respectively), BLMM had a three times shorter computational time, 
and though BLMM is not the most appropriate model for handling 
categorical data, this model presented similar responses to BGLMM. 
Thus, we consider it as an appropriate alternative for categorical data 
modeling. 
 
Key words: Plant breeding; Genetic improvement; Statistical methods; 
Bayesian inference 

INTRODUCTION 
 
Selection of plants that are disease resistant is of fundamental importance for 

agribusiness, because it minimizes risks and production losses and ensures the supply of a 
raw material of better quality to the final consumer. With the advent of genome-wide 
selection (GWS), proposed by Meuwissen et al. (2001), it has become possible to select 
plants based on DNA information; the identification of genetically superior plants can be 
made before its total development, only collecting the plant DNA data at the beginning of 
the life cycle. However, these studies deal with a large number of predictor variables, which 
leads to estimation problems of high dimensionality and multicollinearity. Also, disease 
resistance is recorded as categorical variables in many databases and variables of this nature 
are abundant; however, according to Biscarini et al. (2014), little studied in GWS. 

Thus, for analyses of disease resistance and others categorical traits, the approaches 
Generalized Linear Mixed Model (GLMM) can be used. In addition, according to Biscarini 
et al (2014), statistical methods used for continuous traits may not be adequately applied to 
categorical traits due to the lack of linear relationship between predictors and categorical 
phenotype. It would be useful to know if modeling a categorical trait using a Bayesian 
approximation in a mixed linear model (BLMM), ignoring the assumption of normality of 
the data and residuals will produce results that are different from those obtained with the 
Bayesian approximation for mixed generalized linear model (BGLMM). The Bayesian 
approach addresses the classical estimation problems of GWS (high dimensionality and 
multicollinearity) using a priori distributions, without requiring the maximization of a 
specific function. Consequently, we compared these two models. Additionally, we 
developed an alternative way to allow categorization in BLMM, because this model does 
not provide a direct way to categorize as does BGLMM. The comparison of these two 
approaches was made by predictive ability, bias, computational time and cross validation 
error rate. The estimates of the genetic parameters were obtained using BLASSO (Bayesian 
Least Absolute Shrinkage and Selection Operator) and Bayesian G-BLUP (Genomic Best 
Linear Unbiased Prediction), according to Perez and De Los Campos (2014). These two 
estimation methods were applied in the BLMM and BGLMM frameworks. Then, four 
approaches were compared. 

The objectives of this paper were to compare the strategies BLMM-BLASSO, 
BLMM-GBLUP, BGLMM-BLASSO, BGLMM-GBLUP using a database (genotypes 

http://www.funpecrp.com.br


Genetics and Molecular Research 18 (4): gmr18490 ©FUNPEC-RP www.funpecrp.com.br 

 
 
 
 
 
 

 

Bayesian models applied to Genomic Selection for categorical traits                                3 

 
 

and phenotypes) of 559 trees of E. urograndis, originated from the crossing E. 
urophylla X E. grandis. The categorical phenotypes of rust disease resistance caused by 
Puccinia psiidi pathogen were evaluated with four and two categories. 

MATERIAL AND METHODS 

Data set 
 
The data used in this analysis refers to 559 trees genotyped by SNP (single 

nucleotide polymorphism) markers and phenotyped for resistance to rust disease. The 
experiment was conducted in a randomized incomplete block design with single-tree 
plots and 24-36 repetitions per family in two types of soils (cambisol and latosol). The 
individuals came from 37 F2 full-sib families of E. urograndis from the cross of 10 
progenies of E. grandis × E. urophylla hybrids breeding population belonging to 
Celulose Nipo-Brasileira (CENIBRA S.A.).  For the prediction of genomic genetic 
values, a panel containing 24,806 SNPs markers was used. This database was 
previously treated according to Resende et al. (2017). 

Genotyping 
 
Genotyping was done using Illumina Infinium (Gunderson et al., 2005) and 

EuCHIP60K (Silva-Junior et al., 2015) generating information from 47,069 SNPs 
located at a distance of less than 10kb from 30,444 SNPs previously annotated in gene 
models. After quality control with a call rate >95% and MAF >1% (MAF- Minor Allele 
Frequency), 24,806 SNP markers were included. Further details of the genotyping and 
quality control process are available in Resende et al. (2017). 

Phenotyping 
 
The resistance to rust was measured according to the grading scale proposed by 

Junghans et al. (2003), which has a ordered policotomic classification in four classes 
according to the degree of infection (size of the pustule) or in two classes depending on 
the type of reaction (Table 1). 

 
 

Table1. Evaluation levels of infections and types of reaction in Eucalyptus urophylla to inocula with the 
pathogen Puccinia psidii. 
 

Levels Size of pustules types of reaction 
0 No pustules Resistant 
1 Small pustules (<0.8mm in diameter) Resistant 
2 Medium Pustules (between 0.8mm and 1.6mm in diameter) Susceptible 
3 Large Pustules (> 1.6mm in diameter) Susceptible 
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Bayesian Linear Mixed Model (BLMM) 
 
The Bayesian linear mixed model has components of random effects specified 

by a normal multivariate distribution with vector of means equal to zero and specific 
matrix of variances and covariances. As explained in Perez and De Los Campos (2014), 
the BLMM model with the parameters estimated by BLASSO method is described in 
Equation 1. 

 

ݕ = ߚܺ + ܼଵܾ + ܼଶ݂ + ௔݉ܯ + ݁,                              (Eq. 1) 
 

where 
	is the vector (559 ݕ × 	1) of the rust resistance variable; 
	is the vector (3 ߚ × 	1) containing the general mean and the effects of the 

evaluated soils under an a priori flat distribution, that is, constant, with incidence matrix 
ܺ (559	 × 	3); 

ܾ ∼ ܰ(0, Kୠσୠଶ) is the vector (36 × 1) of random block effects, with incidence 
matrix ܼଵ	(559	 × 	36), covariance matrix of the block effect ܭ௕ and  variance of the 
block effect ߪ௕ଶ	; 

݂ ∼ 	is the family random effects vector (37 (௙ଶߪ௙ܭ,0)ܰ × 	1), with incidence 
matrix ܼଶ	(559	 × 	37), covariance matrix ܭ௙ and variance ߪ௙ଶof the family effect; 

݉௔|߬		~	ܰ	(0,ܦ	ߪ௠ଶ ) is the vector (24.806	 × 	1) of random marker effects and   

(ଶߣ|	ଶ߬)݌ = ∏ ቀఛ
మ

ଶ
ቁ ݁൤

షഓమഊమ

మ ൨
௜  with variance matrix ܦ = ݀݅ܽ݃ ቀ߬ଵଶ, ߬ଶଶ, … , ௝߬

ଶ
	
	ቁ and ߣ is 

the penalty parameter that can be estimated using the Markov Chain Monte Carlo 
(MCMC) method; ߪ௠ଶ  is the variance component of markers and ܯ	559)	 × 	24806) is 
the incidence matrix, where ܯ is parameterized according to Vitezica et al. (2013) so 
that: 

 

	ܯ = 	 ቐ
,ܣܣ	݂݅ ݉௜௝	ℎ݁݊ݐ = 2 − ݌2
,ܽܣ	݂݅	 ݉௜௝	ℎ݁݊ݐ = 1 − ݌2
݂݅	ܽܽ, ݉௜௝	ℎ݁݊ݐ = 0 − ݌2

, 

 

which ܣܣ represents one of the homozygous genotypes, ܽܣ the heterozygous 
genotypes, ܽܽ the other homozygous genotypes and ݌ is the frequency of dominant 
alleles of the marker; ݁ ∼ 	N	(0, Iσଶ) is the vector of random errors associated with 
model (1) with variance component ߪଶ and I is the identity matrix. 

When the BLMM has the parameters estimated by the individual GBLUP 
method, the model is defined in Equation 2 

 

ݕ = ߚܺ + ܼଵܾ + ܼଶ݂ + ݃ܫ + ݁,                               (Eq. 2) 
 

which the effects of markers are replaced by individual additive genetic effects 
	559)	ܫ with incidence matrix given by the identity matrix (௚ଶߪ	௔ܩ,0)	ܰ~݃ × 	559), 
genomic relationship matrix for additive effect ܩ௔ (obtained as ܯܯᇱ/	݌2ߑ	1) −  ,(݌
with M marker matrix and ݌ is the allele frequency of the markers) and ߪ௚ଶ is the 
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additive genomic variance component. In BLASSO, the genomic genetic value (݃) was 
obtained from the estimation of marker effects (݉௔), so that ݃	 =   .௔݉ܯ	

Bayesian Generalized Linear Mixed Model (BGLMM) 
 
The generalized linear model (GLM) has the assumption that the response variable 

or random component of the model belongs to the exponential family of distributions, that 
is, the probability density function or the probability function of the variable of interest can 
be written in the form ݂(ߠ|ݕ,߶) = ௬ఏି௕(ఏ)}݌ݔ݁

௔(థ) +  is the canonical form ߠ where {(߶,ݕ)ܿ
of the location parameter (that is, ߠ is the own population mean parameter), ߶ is the 
dispersion parameter, the functions ܽ(⋅), ܾ(⋅) and ܿ(⋅) are real and known, in addition ܾ(⋅) 
is a differentiable function of the location parameter. Thus, GLM can be defined in three 
components, which are: i) Random component: a response variable belonging to the 
exponential family of distribution; ii) systematic component: a predictive variables of the 
model; iii) link function: a monotonous and differentiable function	݃(. ), which establishes a 
linear relationship between the predictor variables of the model and the mean of the 
response variable (MCCullagh and Nelder, 1989). In this work, the BGLMM allows 
random effects to be added and the model, estimated by the BLASSO method, can be 
described by Equation 3. 

 

ℓ = ߚܺ + ܼଵܾ + ܼଶ݂ + ௔݉ܯ + ݁,                          (Eq. 3) 
 

which ℓ is a vector (559	 × 	1)	of latent variables (or that can not be directly observed) with 
standard normal distribution conditional on the threshold parameters (ݐ௜ ∈ 	 {1, . . . ܭ, − 1}, 
with ܭ representing the number of classes), which allows predicting in which rust resistance 
class a given genotype belongs to. Thus, if the evaluation is performed using four levels of 
infection, the classification can be given by: 

 

௜ݕ = ൞

0, ݂݅	ℓ௜ < 		ଵݐ
1, if	tଵ ≤ ℓ୧ < tଶ	
2, if	tଶ ≤ ℓ୧ < tଷ
3, if	ℓ୧ ≥ tଷ	

. 

 

If the resistance to rust has been evaluated as reaction types (susceptible or 
resistant), the classification will be given by: 

 

௜ݕ = ൜0, ݂݅	ℓ௜ < ଵݐ
1, ݂݅	ℓ௜ ≥ ଵݐ

, 
 

which 0 represents the class of resistant individuals and 1 susceptible individuals. The 
effects of this model are the same as previously specified in model (Eq. 1) with the 
difference in error variance ݁	~	ܰ	(0,1). The model described in Equation 4 was adjusted 
by the Bayesian G-BLUP method, 
 

ℓ = ߚܺ + ܼଵܾ + ܼଶ݂ + ݃ܫ + ݁,                            (Eq. 4) 
 

which ݁ ∼ ܰ(0,1) and the others effects of this model are specified as in (2). 
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Categorization in the BLMM 
 
Unlike BGLMM, which allows working with categorical dependent variables, 

BLMM does not perform classifications and requires alternative ways of doing so. In 
this study the classification was made according to the proportions of classes previously 
observed. The threshold values were pre-established by the quantile of normal 
distribution based on the proportions of each classes contained in the population. The 
sum of all proportions is 1(one).  

Estimation of parameters 
 
The parameters of the respective models BLMM-BLASSO (1), BLMM-G-

BLUP (2), BGLMM-BLASSO (3) and BGLMM-G-BLUP (4) were estimated under the 
Bayesian approach using the BGLR package (Perez and De Los Campos, 2014) of R 
software (R Development Core Team, 2016). More specifically, 120,000 iterations were 
made with 50,000 burn-in used to remove the heat-up period from the chain and the thin 
of 10 to minimize the effect of autocorrelation between the samples of the marginal 
posterior distribution. Simulation was made using the Metropolis-Hasting algorithm of 
the Markov Chain Monte Carlo method. Subsequently, the parameters were estimated 
by taking the posterior mean of the parameters. The convergence of the Markov chains 
was evaluated by the Geweke criterion. 

Model Validation 
 
The validation of the estimates was performed through cross-validation under 

the 13-folds procedure. The initial population was equally and randomly divided into 13 
groups, one of this group was considered as validation population and the other 12 
groups used as training population. In the training population, the model parameters 
were estimated and then used to predict the genomic values of individuals in the 
validation population. Each of the 13 groups was once used as a validation population 
while the remaining 12 groups were used as training population. 

Predictive Ability 
 
The predictive ability in BGLMM was obtained through the Pearson’s 

correlation between the observed phenotype (ݕ) and the latent variable ( ) underlying 

the predicted phenotype. From the latent variable it was possible to categorize the 
eucalyptus tree as resistant or susceptible or at infection levels according to its position 
in relation to the estimated threshold parameters. The estimation of this correlation was 
given by ߩଵ = ௖௢௩(௬,ℓ)

ඥ௏௔௥(௬)⋅ඥ௏௔௥(ℓ)
 or ߩଶ = ௖௢௩(௬,௬ො)

ඥ௏௔௥(௬)⋅ඥ௏௔௥(௬ො)
, where ߩଵ is the correlation 

coefficient obtained in BGLMM and ߩଶ is the correlation coefficient obtained in 
BLMM. 
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Bias of prediction 
 
The bias estimates were obtained from the regression coefficient of the response 

variable observed as a function of the predicted phenotype, or similarly by the Equation 5: 
 

|1 − ܾ௬௬ො | = |1 − ௖௢௩(௬,௬ො)
ఙ೤ෝ
మ |,                                   (Eq. 5) 

 

which ܾ௬௬ො  represents the bias and ߪ௬ො
ଶ	 is the variance of the phenotype. According to 

Resende et al. (2014), the unbiased estimate in genomic prediction is important when 
selection involves individuals of many generations using the effects of the markers obtained 
in just one generation. When BGLMM was used, the bias (1 − ෠ܾ௬ℓ) was obtained from the 
regression coefficient of the observed variable ݕ as a function of the latent variable	ℓ and 
not as a function of ݕ.  

Cross Validation Error Rate 
 
The cross validation error rate (CVER) was calculated according to the 

categorizations made in each validation group, so that, if the predicted phenotypic value of 
the trait is equal to the observed value, the zero value is recorded for the error rate of this 
population validation, and if these values are different, 1 is counted for the error rate of this 
validation population. In this way,  

 

	ܴܧܸܥ = ଵ
௄
∑ ∑ ூ೔

௡ೖ
௡ೖ
௜ୀଵ

௄
௞ୀଵ                                        (Eq. 6) 

 

where ܭ is the total number of validation populations, ݊௞ is the number of individuals in 
each validation population and ܫ௜ ∀(௜	ୀ	ଵ,ଶ,...,௡ೖ) is an indicator variable, such that ܫ௜ 	= 	1 if 
෠ܻ ≠ ܻ and 0 otherwise, that is, ܫ௜ 	= 	0 if ෠ܻ = ܻ. 

RESULTS AND DISCUSSION 
 
The Table 2 contains the CVER values for scenarios with two and four classes in 

the rust resistance assessment. 
 

 

Table 2. Cross validation error rate (CVER) in two scenarios, the Bayesian Generalized Linear Mixed 
Model (BGLMM) and the Bayesian Linear Mixed Model (BLMM) estimated by BLASSO and GBLUP 
methods. 
 

Number of classes Model BLASSO GBLUP 

2 BGLMM 0.29 ± 0.09 0.29 ± 0.08 
BLMM 0.32 ± 0.09 0.31 ± 0.09 

4 BGLMM 0.47 ± 0.11 0.47 ± 0.11 
BLMM 0.51 ± 0.09 0.51 ± 0.09 

 
Results showed that the BGLMM had lower CVER in both scenarios (two or four 

categories). This means that this model made better categorizations than BLMM. Curiously, 
if the categorization method used in BLMM is used in BGLMM, the error rates in both 
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models become equal. Therefore, BGLMM made better categorizations due to the way that 
the model categorize (according to the probit link function that relates the predictor 
variables to the mean of the response variable). A similar study was made by Montesinos-
López et al. (2015), which compared the classification of the BGLMM (obtained by probit 
link function) with an implementation proposed by the authors that use a logit link function. 
In their paper the use of different link functions did not promote differences in results. 

The predictive ability and bias measured for the BGLMM and BLMM models are 
presented in the Table 3. In both scenarios, there was no difference in predictive ability 
between BGLMM and BLMM. For bias values, BGLMM-BLASSO and BLMM-BLASSO 
were identical and the BLMM-GBLUP presented a bias value closer to the ideal than 
BGLMM-GBLUP. 

 
 

Table 3. Predictive ability (Cor) and bias of Bayesian Linear Mixed Model (BLMM) and Bayesian 
Generalized Linear Mixed Model (BGLMM) with parameters estimated by BLASSO (models (1) and (3)) 
and GBLUP (models (2) and (4)) methods. 
 

Number of Classes Model Cor. BLASSO Cor. GBLUP Bias-BLASSO Bias-GBLUP 

2 BGLMM 0.30 ±0.10 0.30 ±0.10 0.45 ±0.17 0.39 ±0.14 
BLMM 0.30 ±0.10 0.30 ±0.10 0.45 ±0.17 1.04 ±0.40 

4 BGLMM 0.37 ± 0.11 0.37 ± 0.11 0.81 ± 0.24 0.87 ± 0.26 
BLMM 0.37 ±0.11 0.38 ± 0.10 0.81 ± 0.24 1.01 ± 0.25 

 
The bias in prediction is of great importance in genomic selection, especially when 

it comes to quantitative traits, because when individuals with overestimated /underestimated 
genetic values are selected, it can induce to economic losses. For the trait of resistance to 
rust in eucalyptus, biased models could indicate resistant individuals, when, in fact, they are 
susceptible. Therefore, it is usual to obtain the bias in studies of genetic improvement, for 
example, Azevedo et al. (2014) and (2015) in animal breeding and Sousa et al. (2018) in 
plant breeding.  

Comparisons between BLMM and BGLMM have been previously made by Tiezzi 
et al. (2015). They compared similar models to BLMM and BGLMM (threshold model) 
presented here and evaluated them for detecting variance components and concluded that 
the BGLMM model explained a higher proportion of additive variance compared to 
BLMM.  

Recent studies using the models compared in this work with other methodologies 
showed good results of BGLMM as Montesinos-López et al. (2019) that compared two 
machine learning methods with BGLMM (this model was called TGBLUP which resembles 
the BGLMM-GBLUP) in seven databases. BGLMM obtained the best percentage of cases 
correctly classified in four of the seven evaluated databases. Also, Ornella et al. (2012) 
compared BLASSO with Bayesian Ridge Regression (BRR) and two Machine Learning 
methods (support linear vector regression and support vector gaussian regression) to predict 
stem rust and yellow rust in wheat database. The results showed similarity between the 
BLASSO and BRR methods besides a slight superiority of BLASSO in relation to the 
Machine Learning methods. 

The computational time of analyses with the BLASSO method is approximately 
fifteen times greater than with the GBLUP method. This is explained by the difference in 
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the number of parameters that each model estimates. While the BLASSO method estimates 
the effect of each marker, that is, 24,806 parameters of markers plus the respective variance 
components, the GBLUP method estimates the additive effects of the model at the 
individual level, that is, the number of genetic parameters corresponds to 559 plus its 
respective variance components. Therefore, the GBLUP estimates a lower number of 
parameters. Also, the BLMM has better computational time than BGLMM (time in 
BGLMM-BLASSO is approximately three times greater than BLMM-BLASSO), because it 
does not need to estimate threshold parameters, which has 1 (in the scenario with 2 classes) 
and 3 (in the scenario with 4 classes) addict parameter in each iteration of Markov Chain.  

Studies in the same database was performed by Resende et al. (2017) with traits of 
complex growth, wood and disease resistance aiming to detect genomic regions in 
association studies. Associations for the rust resistance were detected on chromosome 3. 
According to Resende et al. (2017) genomic heritability for the resistance to Puccinia psidii 
captured 89% of the heritability trait which reaches the value of 0.36. Thus, it is possible to 
select more resistant trees only by using molecular marker data and, concomitantly, good 
predictive ability values and bias are required. We got the same heritability value using a 
BLMM model with the pedigree effect only. 

CONCLUSIONS 
 
Considering the results, we saw that BLMM had a similar error rate cross 

validation. However, it presented a predictive ability similar to BGLMM in both scenarios. 
Moreover, when GBLUP was used, the bias values in both scenarios were closer to optimal 
for BLMM. Thus, analyzing a categorical trait in genomic selection by a linear mixed 
model with Bayesian approximation becomes an alternative, especially when a lower bias 
value in prediction is desired. 
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